图片Pandas迭代方法进行数据遍历和操作在数据处理和分析中,经常需要对数据进行遍历和操作。Pandas是Python中用于数据处理和分析的强大库,提供了多种迭代方法来处理数据。...本文将介绍Pandas中的迭代方法,并展示它们在数据处理中的应用。引言在数据处理中,遍历数据是一项常见任务,用于访问、处理和转换数据。...Pandas是一种广泛使用的Python库,它提供了一组强大的迭代方法,使得数据的遍历和操作更加简单和高效。内置迭代方法Pandas提供了多种迭代方法,用于遍历和操作数据。...总结Pandas提供了灵活且高效的迭代方法,用于遍历和操作数据。...通过熟练掌握这些迭代方法,我们可以更加灵活地处理和分析数据。
如果说iteritems是对各列进行遍历并以迭代器返回键值对,那么iterrows则是对各行进行遍历,并逐行返回(行索引,行)的信息。...以此为基础,为了弥补iterrows中可能无法保留各行Series原始数据类型的问题,itertuples以namedtuple的形式返回各行,并也以迭代器的形式返回,以便于高效遍历。...仍然来看函数签名文档: 而后,再看上述DataFrame调用itertuples后的返回结果: 其中,返回值包含5个namedtuple,这里每个namedtuple都被命名为Pandas,这可以通过...04 小结 以上就是本文分享的Pandas中三个好用的函数,其使用方法大体相同,并均以迭代器的形式返回遍历结果,这对数据量较大时是尤为友好和内存高效的设计。...对于具体功能而言: iteritems是面向列的迭代设计,items函数的功能目前与其相同; iterrows和itertuples都是面向行的迭代设计,其中iterrows以元组对的形式返回,但返回的各行
文章目录 1、iterrows() 2、iteritems() 3、itertuples() iterrows(): 将DataFrame迭代为(insex, Series)对。...itertuples(): 将DataFrame迭代为元祖。...iteritems(): 将DataFrame迭代为(列名, Series)对 有如下DataFrame数据 import pandas as pd inp = [{'c1':10, 'c2':100...dtype: int64 c1 11 c2 110 Name: 1, dtype: int64 c1 12 c2 123 Name: 2, dtype: int64 对于每一行,通过列名访问对应的元素...(Index=0, c1=10, c2=100) Pandas(Index=1, c1=11, c2=110) Pandas(Index=2, c1=12, c2=123) for row in df.itertuples
对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows()for index, row in df.iterrows(): print...print getattr(row, "c1"), getattr(row, "c2") itertuples()应该比iterrows()快 但请注意,根据文档(目前 Pandas 0.19.1):...iterrows:数据的dtype可能不是按行匹配的,因为iterrows返回一个系列的每一行,它不会保留行的dtypes(dtypes跨DataFrames列保留)*iterrows:不要修改行你不应该修改你正在迭代的东西...根据数据类型的不同,迭代器返回一个副本而不是一个视图,写入它将不起作用。
for语句参与的具体迭代的过程为:可迭代对象通过iter方法返回迭代器,迭代器具有next方法,for循环不断地调用next方法,每次按序返回迭代器中的一个值,直到迭代到最后,没有更多元素时抛出异常StopIteration...generator object at 0xb3d31fa4> print(list(x**2 for x in range(5))) # 打印结果: [0, 1, 4, 9, 16] 通过...iterrows()遍历方式计算股票每个交易日收盘价与Ma20差值,此处iterrows是对dataframe格式数据行进行迭代的一个生成器,它返回每行的索引及包含行本身的对象,代码如下所示: #iterrows...先来看下Pandas series 的矢量化方式。 Pandas的DataFrame、series基础单元数据结构基于链表,因此可将函数在整个链表上进行矢量化操作,而不用按顺序执行每个值。...apply()方法也是在行之间进行循环,但由于利用了类似Cython的迭代器的一系列全局优化,其效率要比iterrows高很多。
x + 1 # 应用函数到 Series s_new = s.map(add_one) print(s_new) iterrows()方法 pandas提供了多种方法来遍历DataFrame的行数据...其中,iterrows方法返回一个迭代器,可以逐行遍历DataFrame,返回每一行数据的索引和值。...它的基本使用方法如下: import pandas as pd df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) for index, row in df.iterrows...我们可以通过row[“列名”]或row.列名的方式来获取指定列的值。 iteritems()方法 iteritems()方法以 (列标签,列) 的形式遍历 DataFrame 的列。...它返回一个迭代器,其中每个元素都是一个元组,元组中包含列标签和对应列的 Pandas Series。
对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows() for index, row in df.iterrows():...'): print getattr(row, "c1"), getattr(row, "c2") itertuples()应该比iterrows()快 但请注意,根据文档(目前 Pandas...:不要修改行 你不应该修改你正在迭代的东西。...根据数据类型的不同,迭代器返回一个副本而不是一个视图,写入它将不起作用。
迭代DataFrame 迭代DataFrame - 遍历数据帧 iteritems()示例 iterrows()示例 itertuples()示例 Pandas对象之间的基本迭代的行为取决于类型。...当迭代一个系列时,它被视为数组式,基本迭代产生这些值 注意: 不要尝试在迭代时修改任何对象。迭代是用于读取,迭代器返回原始对象(视图)的副本,因此更改将不会反映在原始对象上。...迭代DataFrame import pandas as pd import numpy as np N=20 df = pd.DataFrame({ 'A': pd.date_range(...DataFrame - 遍历数据帧 迭代器 details 备注 iteritems() 将列迭代(col,value)对 列值 iterrows() 将行迭代(index,value)对 行值 itertuples...() 以namedtuples的形式迭代行 行pandas形式 iteritems()示例 import pandas as pd import numpy as np df = pd.DataFrame
我们将通过循环遍历每一行来设置要在数据集上执行的计算,然后测量整个操作的速度。这将为我们提供一个基准,以了解我们的新优化对我们有多大帮助。 ?...我们编写了一个for循环,通过循环dataframe对每一行应用函数,然后测量循环的总时间。 在i7-8700k计算机上,循环运行5次平均需要0.01345秒。...使用.iterrows() 我们可以做的最简单但非常有价值的加速是使用Pandas的内置 .iterrows() 函数。 在上一节中编写for循环时,我们使用了 range() 函数。...Pandas的 .iterrows() 函数在内部实现了一个生成器函数,该函数将在每次迭代中生成一行Dataframe。...也就是说,如果你想多次迭代列表并且它足够小以适应内存,那么使用for循环和range函数会更好。
在通信方面,Ray 使用共享内存,并且通过 Apache Arrow 实现零拷贝串行化,显著降低了进程之间的通信代价。 ?...: user 49.3 s, sys: 4.09 s, total: 53.4 s Wall time: 54.3 s Pandas on Ray主要是通过并线化来加速,就和Spark一样, 1.1使用...iterrows或者apply代替直接对dataframe遍历 ---- 用过Pandas的都知道直接对dataframe进行遍历是十分低效的,当需要对dataframe进行遍历的时候我们可以使用迭代器...总结 对于Pands的优化还有很多,这里主要介绍三种最常用的优化方法,一种是对于数据量极大的情况,可以使用Pandas on Ray 或者 Dask 优化,第二种是对于在运算的时候采用自定义的矢量迭代函数代替...for循环可以取得显著的性能提升,第三种方法是通过对存储类型的设置或转换来优化pandas内存使用。
对DataFrame对象使用该方法的话就是对矩阵中的每一行或者每一列进行遍历操作(通过axis参数来确定是行遍历还是列遍历);对Series对象使用该方法的话,就是对Series中的每一个元素进行循环遍历操作...除了对矩阵使用apply()方法进行迭代外,还可以.iteritems()、.iterrows()与.itertuples()方法进行行、列的迭代,以便进行更复杂的操作。....2 40 Name: b, dtype: int64 行迭代与列迭代的形式一样: In [22]: for i in df.iterrows(): ...: print(type(...------- (2, a 30 b 40 Name: 2, dtype: int64) --------- In [23]: for i in df.iterrows...print(type(i), i) ...: pandas.core.frame.Pandas'> Pandas(Index=0, a=10, b=20) pandas.core.frame.Pandas
Pandas-9. 迭代 Pandas对象之间的底本迭代的行为取决于类型,当迭代一个Series时,它被视为数组,基本迭代产生值。DataFrame和Panel迭代对象的键。...DataFrame中的键: A x y C D 遍历DataFrame中的行,可以用以下函数: iteritems() - 迭代(key, value) 对 iterrows() - 将行迭代为(索引,...dtype: float64 col3 0 -1.194191 1 -1.853452 2 0.724990 3 0.337952 Name: col3, dtype: float64 iterrows...() 返回一个迭代器,产生每个索引值以及包含每行数列的Series: for row_index,row in df.iterrows(): print (row_index,row) 以下为显示结果...) Pandas(Index=3, col1=-0.9788868583861823, col2=0.47797217991709673, col3=0.3379524503396801) 不要在迭代时修改对象
遍历数据有以下三种方法: 简单对上面三种方法进行说明: iterrows(): 按行遍历,将DataFrame的每一行迭代为(index, Series)对,可以通过row[name]对元素进行访问。...itertuples(): 按行遍历,将DataFrame的每一行迭代为元祖,可以通过row[name]对元素进行访问,比iterrows()效率高。...iteritems():按列遍历,将DataFrame的每一列迭代为(列名, Series)对,可以通过row[index]对元素进行访问。...示例数据 import pandas as pd inp = [{‘c1’:10, ‘c2’:100}, {‘c1’:11, ‘c2’:110}, {‘c1’:12, ‘c2’:123}] df =...(index) # 输出每行的索引值 1 2 row[‘name’] # 对于每一行,通过列名name访问对应的元素 for row in df.iterrows(): print(row[‘c1
11种方法对比Pandas双列求和 数据模拟 为了效果明显,模拟了一份5万条的数据,4个字段: import pandas as pd import numpy as np data = pd.DataFrame..."C":np.random.uniform(1,1000,50000), "D":np.random.uniform(1,1000,50000) }) data 11种函数 下面是通过...迭代 iterrows()迭代每行的数据 In [10]: def fun8(df): for _, rows in df.iterrows(): rows["E"] = rows...["A"] + rows["C"] zip函数 通过zip函数现将AC两列的数据进行压缩 In [11]: def fun9(df): df["E"] = [i+j for i,j in zip...(df["A"], df["C"])] assign函数 通过派生函数assign生成新的字段E In [12]: def fun10(df): df.assign(E = df["A"] +
pandas 对象基于类型进行迭代操作。...对象还支持字典式的 items() 方法,通过键值对迭代。...用下列方法可以迭代 DataFrame 里的行: iterrows():把 DataFrame 里的行当作 (index, Series)对进行迭代。...::: danger 警告 Pandas 对象迭代的速度较慢。...iterrows() 迭代 DataFrame 或 Series 里的每一行数据。
import pandas as pd #error_bad_lines=False表示跳过错误数据行 data = pd.read_csv('file1.csv', error_bad_lines=False...) 遍历DataFrame数据的行 DataFrame.iterrows() for index, row in df.iterrows(): print row["c1"], row["c2"...] 注:iterrows()迭代返回对象对象被修改,df也会被修改 import pandas as pd from pandas import DataFrame #任意的多组列表 a = [1,2,3...dataFrame: a_name b_name 0 1 4 1 2 5 2 3 6 """ for index, row in dataFrame.iterrows
pandas是基于numpy库的数组结构上构建的,并且它的很多操作都是(通过numpy或者pandas自身由Cpython实现并编译成C的扩展模块)在C语言中实现的。...接下来,你将看到一些改进的Pandas结构迭代解决方案。 ▍使用itertuples() 和iterrows() 循环 那么推荐做法是什么样的呢?...实际上可以通过pandas引入itertuples和iterrows方法可以使效率更快。这些都是一次产生一行的生成器方法,类似scrapy中使用的yield用法。...在这种情况下,所花费的时间大约是.iterrows方法的一半。 但是,这还不是“非常快”。一个原因是.apply()将在内部尝试循环遍历Cython迭代器。...使用.itertuples:从Python的集合模块迭代DataFrame行作为namedTuples。 4. 使用.iterrows:迭代DataFrame行作为(index,Series)对。
但是当我们处理大量迭代(数百万/十亿行)时,使用循环是一种犯罪。您可能会被困几个小时,后来才意识到它行不通。这就是在 python 中实现矢量化变得非常关键的地方。 什么是矢量化?...在使用 Pandas DataFrame 时,这种差异将变得更加显著。 数学运算 在数据科学中,在使用 Pandas DataFrame 时,开发人员使用循环通过数学运算创建新的派生列。...我们创建一个具有 500 万行和 4 列的 pandas DataFrame,其中填充了 0 到 50 之间的随机值。...## 循环遍历 import time start = time.time() # 使用 iterrows 遍历 DataFrame for idx, row in df.iterrows():...m1、m2、m3……的值是通过使用与 x1、x2、x3……对应的数百万个值求解上述等式来确定的 import numpy as np # 设置 m 的初始值 m = np.random.rand(
领取专属 10元无门槛券
手把手带您无忧上云