首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

干货 | 利用Python操作mysql数据库

那么问题来了,怎么实现直接把mysql中的数据直接导入python中呢这就要讲到今天的重点了: 第一种方法:read_sql 第二种方法:pymysql 先看一下我们今天的数据库信息: host:192.168.0...方法是pandas中用来在数据库中执行指定的SQL语句查询或对指定的整张表进行查询,以DataFrame 的类型返回查询结果....至此一次简单地利用pandas中read_sql方法从数据库获取数据就完成了 2 PyMySQL PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,可以方便的连接数据库并操作数据库...可以把游标当作一个指针,它可以指定结果中的任何位置,然后允许用户对指定位置的数据进行处理,通俗来说就是,操作数据和获取数据库结果都要通过游标来操作。如果不获取游标,我们就没法获得查询出来的数据。...4,代表查询出的数据集共包含4条数据。

2.9K20

pycharm与mysql连接错误系统_pycharm怎么使用anaconda环境

;" cursor.execute(sql) # 执行sql语句 result=cursor.fetchall() #取回查询结果 # 注意:取回的结果是一个嵌套的元组, 且没有数据表中的列名 print...cursor.close() #关闭游标对象 connection.close() 上述方式取回的结果是一个嵌套的元组, 并且没有数据表中的列名,不方便后续处理。...(sql): # 函数的参数为一个字符串类型的 SQL 语句,返回值为一个 DataFrame 对象 from pandas import read_sql # 连接本机上的MySQL服务器中的'sakila...的 read_sql 函数执行 SQL 语句并取回检索结果 df=read_sql(sql,connection) # 关闭数据库连接 connection.close() return df # 使用上述封装的函数执行...如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就等于你指定的该参数的值. pymysql.connect()参数介绍: host=None,# 要连接的主机地址, 本机上的 MySQL

59930
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一场pandas与SQL的巅峰大战(七)

    安装 在命令行中使用pip install pandasql即可实现安装。 使用 从pandasql包中可以导入sqldf,这是我们核心要使用的接口。它接收两个参数,第一个是合法的SQL语句。...read_sql 这个函数的作用是,对数据库中的表运行SQL语句,将查询结果以dataframe的格式返回。...也有很多读者朋友私信与我讨论文章中很多的细节问题,非常感谢大家的支持,看到你们在认真学习,我也非常开心! 关于本系列,我总结了以下几点: 1.提示:系列第一篇文章的关键字是“对比”,没有“一”。...这里再补充两个没有提及的: sql中join可以有多个字段,pandas中的merge操作,如果想实现同样的效果,可以在on参数中用列表的形式。这一点在系列第六篇文章中也用到了。...在和很多朋友交流过程中,发现了很多之前没有遇到的问题。这个时候一方面要查资料看文档,另一方面也要多动手多实践,与人多交流,这样才能真正形成自己的认识。

    1.8K20

    Pandas操作MySQL数据库

    pymysql sqlalchemy 先安装两个库: pip install pymysql pip install sqlalchemy 本地数据库 查看一个本地数据库中某个表的数据。...,在连接没有关闭之前,游标对象可以反复使用 执行sql查询语句 In [3]: sql=""" # 待执行的sql语句 select * from Student; """ # 执行sql语句 cur.execute...(按照顺序查询) 通过游标获取全部的数据: fetch相关的函数都是获取结果集中剩下的数据,多次调用的时候只会从剩余数据中查询: 当第二次调用的时候结果就是空集。...通过游标获取查询的结果集的特点: 可以获取1条、多条和全部数据 在获取数据的时候是按照顺序读取的 fetchall函数返回剩下的所有行 如果是末尾,则返回空元组; 否则返回一个元组,其元素是每一行的记录封装的一个元组...中: show tables; 使用read_sql读取 使用Pandas自带的read_sql函数能够自行读取数据,读取上面创建的数据: import pandas as pd from sqlalchemy

    64710

    【呕心总结】python如何与mysql实现交互及常用sql语句

    2、在 python 脚本中,我采用 pymysql 和 sqlalchemy 这两个库与 mysql 建立连接,用 pandas 来处理数据。...情境B:python 脚本想从 mysql 拿到数据 如果已经存在某个表格,想要向该表格提交某条指令,需返回数据,我用的是 pandas的read_sql () ,返回的数据类型是 pandas 的 dataframe...我在最初一个月的实践中,最常出现的错误有: 值的引用没有加上引号; 符号错乱:多一个符号,少一个符号; 值的类型不符合:不管 mysql 表格中该值是数,还是文本,在定义 sql 语句的字符串时,对每个值都需要转化为字符串...二、sql语句:搜索查询 搜索是指在数据库的某个表格中查询符合特定条件的数据,并返回查询结果。...三、sql语句:修改表属性 横向的一整条数据,叫做行;竖向的一整条数据,叫作列。列的名字,叫做 column,这是通用的知识点。 这段时间的实战中,我完全没有用到修改表的名称、重设index等知识点。

    3K21

    Python链接数据库,SQL语句查询这样操作!

    01 前言 Python链接数据库的方式有几种,但是原理都是一样的,总共可以分为两个步骤,第一步是与数据库建立链接,第二步执行sql查询语句,这篇将分别介绍如何与数据库链接以及如何进行sql语句查询。...pymysql.connect pymysql是python自带的一个库,使用前需要使用pip install pymysql安装这个库,安装完以后使用该库中的connect方法可以直接与数据库进行链接...xxx.xxx",user="zhangjian",password="ZhangJian",db="demo",charset='utf8') 这样就将python与数据库进行了链接,接下来执行sql查询语句就可以将数据库中的内容读取到...,read_sql方法返回的是我们熟悉的数据框结构,可以方便浏览数据,如需查看汇总信息,修改sql语句即可。...()方法,sql参数不能直接使用表名称,需要使用完整的sql语句; 使用 cursor() 方法创建游标的方法读取sql语句,返回的是包含列信息的元组, 综上所述,在pandas框架下使用create_engine

    5K31

    Python连接数据库,SQL语句查询这样操作!

    01 前言 Python链接数据库的方式有几种,但是原理都是一样的,总共可以分为两个步骤,第一步是与数据库建立链接,第二步执行sql查询语句,这篇将分别介绍如何与数据库链接以及如何进行sql语句查询。...pymysql.connect pymysql是python自带的一个库,使用前需要使用pip install pymysql安装这个库,安装完以后使用该库中的connect方法可以直接与数据库进行链接...xxx.xxx",user="zhangjian",password="ZhangJian",db="demo",charset='utf8') 这样就将python与数据库进行了链接,接下来执行sql查询语句就可以将数据库中的内容读取到...,read_sql方法返回的是我们熟悉的数据框结构,可以方便浏览数据,如需查看汇总信息,修改sql语句即可。...使用 cursor() 方法创建游标的方法读取sql语句,返回的是包含列信息的元组, 综上所述,在pandas框架下使用create_engine 加read_sql()方法,读取数据库文件,代码简洁

    3.3K31

    pymysql ︱mysql的基本操作与dbutils+PooledDB使用

    right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录 inner join(等值连接) 只返回两个表中联结字段相等的行 select * from A innerjoin...从baike369表的name字段中查询包含“a”到“w”字母和数字以外的字符的记录。...SQL代码如下: SELECT * FROM baike369 WHERE name REGEXP '[^a-w0-9]'; 查看name字段中查询包含“a”到“w”字母和数字以外的字符的记录的操作效果...使用方括号([])可以将需要查询的字符组成一个字符集;通过“[abc]”可以查询包含a、b和c等3个字母中任何一个的记录。...SELECT * FROM baike369 WHERE name REGEXP '[ceo]'; name字段中查询出包含数字的记录。

    4.9K30

    Python操作SQL 服务器

    执行查询 SQL 服务器上运行的每个查询都包含游标初始化和查询执行。另外,如果要在服务器内部进行任何更改,还需要将这些更改提交到服务器(下一部分会有所介绍)。...首先,从名为“customers”表中选择前1000行: cursor.execute("SELECT TOP(1000) * FROM customers") 执行该操作,但这发生在服务器内部,实际上什么也没有返回到...Pandas提供了一个非常方便的函数read_sql,你可能已经猜到了,该函数可以从SQL读取数据。...read_sql需要查询和连接实例cnxn,如下所示: data = pd.read_sql("SELECT TOP(1000) * FROM customers", cnxn) 这会返回到包含“customers...在SQL中变更数据 现在,如果要变更SQL中的数据,需要在原始的初始化连接后添加另一步,执行查询过程。 在SQL中执行查询时,这些变更将保存在临时存在的空格中,而不是直接对数据进行更改。

    3.3K00

    手把手教你搭建一个Python连接数据库快速取数工具

    那如何实现一个自助取数查询工具? 基于底层数据来开发不难,无非是将用户输入变量作为筛选条件,将参数映射到sql语句,并生成一个sql语句然后再去数据库执行。...pandas调用数据库主要有read_sql_table,read_sql_query,read_sql三种方式。 本文主要介绍一下Pandas中read_sql_query方法的使用。...chunksize:如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小 read_sql_query()中可以接受SQL语句,DELETE,INSERT INTO...、UPDATE操作没有返回值(但是会在数据库中执行),程序会抛出SourceCodeCloseError,并终止程序。...1)、外部输入参数模块 txt文本中,就包含一列数据,第一行列名,读取的时候忽略第一行 #建立ID——编号字典 def buildid(): sqlid = """select * from

    1.1K10

    手把手教你搭建一个 Python 连接数据库,快速取数工具

    本文主要介绍一下 Pandas 中 read_sql_query 方法的使用 1:pd.read_sql_query() 读取自定义数据,返还DataFrame格式,通过SQL查询脚本包括增删改查。...chunksize:如果提供了一个整数值,那么就会返回一个generator,每次输出的行数就是提供的值的大小 read_sql_query()中可以接受SQL语句,DELETE,INSERT INTO...、UPDATE操作没有返回值(但是会在数据库中执行),程序会抛出SourceCodeCloseError,并终止程序。...import cx_Oracle # Pandas读写操作Oracle数据库 import pandas as pd # 避免编码问题带来的乱码 import os os.environ['NLS_LANG...1)外部输入参数模块 txt 文本中,就包含一列数据,第一行列名,读取的时候忽略第一行 #建立ID——编号字典 def buildid(): sqlid = """select * from

    1.4K30

    Pandas vs Spark:数据读取篇

    总体而言,数据读取可分为从文件读取和从数据库读取两大类,其中数据库读取包含了主流的数据库,从文件读取又区分为不同的文件类型。...pandas中以read开头的方法名称 按照个人使用频率,对主要API接口介绍如下: read_sql:用于从关系型数据库中读取数据,涵盖了主流的常用数据库支持,一般来讲pd.read_sql的第一个参数是...SQL查询语句,第二个参数是数据库连接驱动,所以从这个角度讲read_sql相当于对各种数据库读取方法的二次包装和集成; read_csv:其使用频率不亚于read_sql,而且有时考虑数据读取效率问题甚至常常会首先将数据从数据库中转储为...提供的一个小彩蛋了,表面上看它就是一个用于读取html文件中数据表格的接口,但实际上有人却拿他来干着爬虫的事情…… read_clipboard:这可以算是Pandas提供的另一个小彩蛋,用于从剪切板中读取结构化数据到...在以上方法中,重点掌握和极为常用的数据读取方法当属read_sql和read_csv两种,尤其是read_csv不仅效率高,而且支持非常丰富的参数设置,例如支持跳过指定行数(skip_rows)后读取一定行数

    1.9K30

    Pandas库常用方法、函数集合

    这里列举下Pandas中常用的函数和方法,方便大家查询使用。...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...agg:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum...:计算分组的标准差和方差 describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax...、cumprod:计算分组的累积和、最小值、最大值、累积乘积 数据清洗 dropna: 丢弃包含缺失值的行或列 fillna: 填充或替换缺失值 interpolate: 对缺失值进行插值 duplicated

    31510

    【Python】已解决:AttributeError: ‘Engine’ object has no attribute ‘execution_options’

    一、分析问题背景 在使用Python进行数据处理时,经常需要从数据库中读取数据。pandas库的read_sql()方法提供了一种便捷的方式来执行SQL查询并将结果直接加载到DataFrame中。...这个错误通常发生在尝试通过pandas.read_sql()方法从MySQL数据库中查询数据时。...错误的Engine对象使用:可能是在创建或使用sqlalchemy.engine.Engine对象时出现了错误。 代码中的其他潜在问题:比如错误的参数传递,或者对库函数的误解。...如果上述都没问题,以下是一个修正后的代码示例: from sqlalchemy import create_engine import pandas as pd # 确保使用的连接字符串格式正确...这通常可以解决execution_options属性不存在的问题。 五、注意事项 库版本管理:在开发过程中,要特别注意库的版本管理,确保所使用的库之间是相互兼容的。

    42810

    n种方式教你用python读写excel等数据文件

    内存不够时使用,一般不太用 readlines() :一次性读取整个文件内容,并按行返回到list,方便我们遍历 具体用法可见:一文搞懂python文件读写 2....txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。...主要模块: xlrd库 从excel中读取数据,支持xls、xlsx xlwt库 对excel进行修改操作,不支持对xlsx格式的修改 xlutils库 在xlw和xlrd中,对一个已存在的文件进行修改...插入图标等表格操作,不支持读取 Microsoft Excel API 需安装pywin32,直接与Excel进程通信,可以做任何在Excel里可以做的事情,但比较慢 6....操作数据库 python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。

    4K10

    Pandas必会的方法汇总,数据分析必备!

    2 df.tail() 查询数据的末尾5行 3 pandas.qcut() 基于秩或基于样本分位数将变量离散化为等大小桶 4 pandas.cut() 基于分位数的离散化函数 5 pandas.date_range...9 .drop() 删除Series和DataFrame指定行或列索引。 10 .loc[行标签,列标签] 通过标签查询指定的数据,第一个值为行标签,第二值为列标签。...) 返回一个Series中的唯一值组成的数组。...read_sas 读取存储于SAS系统自定义存储格式的SAS数据集 12 read_sql 读取SQL 查询结果为pandas的DataFrame 13 read_stata 读取Stata文件格式的数据集...默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。 2 .duplicated() 判断各行是否是重复行,返回一个布尔型Series。

    5.9K20

    选Pandas还是选SQL

    SQL语句,通过调用read_sql()方法 建立数据库 首先我们通过SQL语句在新建一个数据库,基本的语法相信大家肯定都清楚, CREATE TABLE 表名 ( 字段名称 数据类型 ... )...300的甜品名称,在Pandas模块中的代码是这个样子的 # 转换数据类型 df_sweets['weight'] = pd.to_numeric(df_sweets['weight']) # 输出结果...下面我们来看一下多个条件的数据筛选,例如我们想要重量等于300并且成本价控制在150的甜品名称,代码如下 # Pandas df_sweets[(df_sweets.cost == 150) & (df_sweets.weight...name FROM sweets WHERE cost BETWEEN '200' AND '300'", connector) output 要是涉及到排序的问题,在SQL当中使用的是ORDER...manufacturers GROUP BY name HAVING COUNT(name) > 1 """, connector) 数据合并 当两个数据集或者是多个数据集需要进行合并的时候,在Pandas

    66910
    领券