玩转Pandas系列已经连续推送3篇,尽量贴近Pandas的本质原理,结合工作实践,按照使用Pandas的逻辑步骤,系统地并结合实例推送Pandas的主要常用功能,已经推送的3篇文章:
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas
Pandas[1]是用Python分析数据的工业标准。只需敲几下键盘,就可以加载、过滤、重组和可视化数千兆字节的异质信息。它建立在NumPy库的基础上,借用了它的许多概念和语法约定,所以如果你对NumPy很熟悉,你会发现Pandas是一个相当熟悉的工具。即使你从未听说过NumPy,Pandas也可以让你在几乎没有编程背景的情况下轻松拿捏数据分析问题。
Pandas是Python中常用的数据处理和分析库,它提供了高效、灵活且易于使用的数据结构和数据分析工具。
Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作!
Pandas是一个强大的Python数据处理库,提供了丰富的功能和灵活的操作方式。其中,排序是一项重要的数据整理和分析任务。本文将介绍如何使用Pandas进行排序操作,以及它在数据分析中的作用。
在计算机编程中,pandas是Python编程语言的用于数据操纵和分析的软件库。特别是,它提供操纵数值表格和时间序列的数据结构和运算操作。它的名字衍生自术语“面板数据”(panel data),这是计量经济学的数据集术语,它们包括了对同一个体的在多个时期上的观测。它的名字是短语“Python data analysis”自身的文字游戏。
表格是存储数据的最典型方式,在Python环境中没有比Pandas更好的工具来操作数据表了。尽管Pandas具有广泛的能力,但它还是有局限性的。比如,如果数据集超过了内存的大小,就必须选择一种替代方法。但是,如果在内存合适的情况下放弃Pandas使用其他工具是否有意义呢?
Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术
上一篇文章一场pandas与SQL的巅峰大战中,我们对比了pandas与SQL常见的一些操作,我们的例子虽然是以MySQL为基础的,但换作其他的数据库软件,也一样适用。工作中除了MySQL,也经常会使用Hive SQL,相比之下,后者有更为强大和丰富的函数。本文将延续上一篇文章的风格和思路,继续对比Pandas与SQL,一方面是对上文的补充,另一方面也继续深入学习一下两种工具。方便起见,本文采用hive环境运行SQL,使用jupyter lab运行pandas。关于hive的安装和配置,我在之前的文章MacOS 下hive的安装与配置提到过,不过仅限于mac版本,供参考,如果你觉得比较困难,可以考虑使用postgreSQL,它比MySQL支持更多的函数(不过代码可能需要进行一定的改动)。而jupyter lab和jupyter notebook功能相同,界面相似,完全可以用notebook代替,我在Jupyter notebook使用技巧大全一文的最后有提到过二者的差别,感兴趣可以点击蓝字阅读。希望本文可以帮助各位读者在工作中进行pandas和Hive SQL的快速转换。本文涉及的部分hive 函数我在之前也有总结过,可以参考常用Hive函数的学习和总结。
作为一名数据分析师,利用SQL熟练的取数是一项必备的基础能力。除了SQL以外,Python的pandas也为我们提供了SQL的大多数功能。自从从事算法之后就很少写SQL了,今天在整理印象笔记时趁机复习了一下,也花了点时间把SQL中主要的增删改查方法用pandas对应实现一遍。可以说是非常实用了。
【导读】工具包 datatable 的功能特征与 Pandas 非常类似,但更侧重于速度以及对大数据的支持。此外,datatable 还致力于实现更好的用户体验,提供有用的错误提示消息和强大的 API 功能。通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。
Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一
操作系统:CentOS 7.4 Python版本 :3.6 Django版本: 1.10.5 操作系统用户:oms 数据处理:pandas 前端展示:highcharts
Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。经过多年不懈的努力,Pandas 离这个目标已经越来越近了。
上次介绍了Pandas的部分操作,包括创建Series,DataFrame以及基本索引,文件保存与读取等。今天我们介绍一下Pandas常用的其他功能。 首先我们还是随机产生一个数据表,5行3列的数据框。保存到csv文件并读取。 import pandas as pd import numpy as np sample = np.array(np.random.randint(0,100, size=15)) sample_reshape = sample.reshape((5,3)) sample_pd
可能大家经常在技术讨论群众聊天,就会发现一个现象。就是只要有人提起python的一些数据怎么处理的时候,保准会有人说用pandas。
有时候,我们可能想要截取一个数据框架来删除多余的数据,这可以通过调用truncate()方法来实现。
Pandas 中的多级索引是一种强大的工具,用于处理具有多个维度或层次的数据。多级索引可以在行和列上创建层次结构,提供更灵活的数据表示和分析方式。在本篇博客中,我们将深入介绍 Pandas 中的多级索引,通过实例演示如何应用这一功能。
相信对于不少的数据分析从业者来说呢,用的比较多的是Pandas以及SQL这两种工具,Pandas不但能够对数据集进行清理与分析,并且还能够绘制各种各样的炫酷的图表,但是遇到数据集很大的时候要是还使用Pandas来处理显然有点力不从心。
现代机器学习为了更精确地构建模型需要处理大量数据。大量数据的处理对于时间的要求有了很大的挑战,在Python提供很多数据处理的函数库,今天给大家介绍一个高效的数据处理函数库Python Datatable。 它是一个用于以最大可能的速度在单节点机器上执行大数据(超过100GB)操作的函数库。DAtatable库与Pandas库非常类似,但更侧重于速度和大数据支持,Python datatable还致力于实现良好的用户体验,明确的错误提醒和强大的API。 在本文中,我们将比较一下在大型数据集中使用Datatable和Pandas的性能。
来源:DeepHub IMBA 本文约1800字,建议阅读5分钟 我们将探讨 Pandas value_counts() 的不同用例。 数据科学家通常将大部分时间花在探索和预处理数据上。当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。 默
数据科学家通常将大部分时间花在探索和预处理数据上。当谈到数据分析和理解数据结构时,Pandas value_counts() 是最受欢迎的函数之一。该函数返回一个包含唯一值计数的系列。生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。
主要讲解了Pandas中常用的数据结构 Series 和 DataFrame 的用法。
Python 3.11 is up to 10–60% faster than Python 3.10. On average, we measured a 1.25x speedup on the standard benchmark suite. See Faster CPython for details. — Python 3.11 Changelog.
3)对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。
原题 | Surprising Sorting Tips for Data Scientists
作为一名数据分析师,平常用的最多的工具是SQL(包括MySQL和Hive SQL等)。对于存储在数据库中的数据,自然用SQL提取会比较方便,但有时我们会处理一些文本数据(txt,csv),这个时候就不太好用SQL了。Python也是分析师常用的工具之一,尤其pandas更是一个数据分析的利器。虽然二者的语法,原理可能有很大差别,但在实现的功能上,他们有很多相通的地方,这里特进行一个总结,方便大家对比学习~
来源:DeepHub IMBA本文共1300字,建议阅读5分钟本文验证Python 3.11的性能优化。 Python 3.11 pre-release已经发布。更新日志中提到: Python 3.11 is up to 10–60% faster than Python 3.10. On average, we measured a 1.25x speedup on the standard benchmark suite. See Faster CPython for details. — Python
对于DataFrame,对齐会同时发生在行和列上,两个DataFrame对象相加后,其索引和列会取并集,缺省值用NaN。
这篇万字长文,是黄同学辛苦为大家辛苦翻译排版。希望大家一定从头到尾学习,否则,可能会找不到操作的数据源。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!
量化投资逃不过数据处理,数据处理逃不过数据的读取和存储。一般,最常用的交易数据存储格式是csv,但是csv有一个很大的缺点,就是无论如何,存储起来都是一个文本的格式,例如日期‘2018-01-01’,在csv里面是字符串格式存储,每次read_csv的时候,我们如果希望日期以datatime格式存储的时候,都要用pd.to_datetime()函数来转换一下,显得很麻烦。而且,csv文件万一一不小心被excel打开之后,说不定某些格式会被excel“善意的改变”,譬如字符串‘000006’被excel打开之后,然后万一选择了保存,那么再次读取的时候,将会自动变成数值,前面的五个0都消失了,很显然,原来的股票代码被改变了,会造成很多不方便。
在第一第二课已经讲了notebook的基础使用,python的基础语法及常用的数据结构及其运算,包括:
在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。
Pandas是一个开源的Python库,提供了高性能、易用和灵活的数据结构,用于数据处理和分析。它建立在NumPy之上,使得处理结构化数据更加简单和高效。Pandas的两个主要数据结构是Series和DataFrame,可以理解为NumPy数组的增强版。它们提供了更多的功能和灵活性,使得数据处理变得更加直观和方便。
领取专属 10元无门槛券
手把手带您无忧上云