首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何理解GWAS中Manhattan plot和QQ plot所传递的信息

配图来源:GWAS Catalog ----/ START /---- 在GWAS研究中,Manhattan plot和QQ plot是最常画的两类图,它们可以把跟研究的性状(比如,基因型和身高)显著相关的基因位点清晰地展现出来...曼哈顿夜景 Q-Q plot(QQ图)虽然所用的数据和上面曼哈顿图的一样,但是它要表达的信息比起曼哈顿图来要丰富得多,而且在这两个图中更加能够体现GWAS结果好坏的是QQ plot——它是GWAS研究中更加重要的质控图...其实,一直以来QQ plot是统计学分析中的常用图,在1968年Wilk.M.B的这篇文章(doi:10.1093/biomet/55.1.1)就提出了如何绘制这样的图已经它的用途。...在GWAS分析中,当我们通过曼哈顿图看到某些SNP和表型性状(或者疾病)有着很强的相关信号(比如,p-value 的。...而且,我们知道基因组上的随机漂变是一定存在的,所以一定会有位点与随机漂变相关,特别是是在p-value比较大的位点看起来就应该和随机漂变重叠,这就表现在QQ-plot的前半部分里。

2.5K71

python内置库和pandas中的时间常见处理(3)

本篇主要介绍pandas中的时间处理方法。 2 pandas库常见时间处理方法 时间数据在多数领域都是重要的结构化数据形式,例如金融、经济、生态学、神经科学和物理学。...我们遇到的应用可能有以下几种: 1)时间戳,具体的时间时刻 2)固定的时间区间,例如2022年6月或整个2021年 3)时间间隔,由开始时间和结束时间表示 在这里,我们主要关注以上三种情况。...2.1 生成日期范围 在pandas中,生成日期范围使用pandas.date_range()方法实现。...pandas中的基础时间序列种类是由时间戳索引的Series,在pandas外部通常表示为python字符串或datetime对象。...pandas的时间序列我们可以对其进行切片和选择子集等操作。

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python内置库和pandas中的时间常见处理(1)

    在进行matplotlib时间序列型图表之前,首先了解python内置库和pandas中常见的时间处理方法,本篇及之后几篇会介绍常见库的常用方法作为时间序列图表的基础。...1 python内置库的常见时间处理方法 在python中时间处理内置库为time和datetime。在使用时无需安装,直接调用即可。...如Jan %B 本地完整的月份名称 如January %c 本地相应的日期和时间表示 %j 年内的一天(001-366) %U 一年中的星期数(00-53)星期天为星期的开始 %w 星期(0-6...),星期天为星期的开始 %W 一年中的星期数(00-53)星期一为星期的开始 %x 本地相应的日期表示 %X 本地相应的时间表示 %Z 当前时区的名称 %% %号本身 1.1 datetime库的常见时间方法...datetime库是注重处理日期和时间的类,常见的时间类型如下表所示: 类型 描述 datetime.date 理想化的简单型日期,属性:year、month、day datetime.time 独立于任何特定日期的理想化时间

    2.1K20

    深入探索Python中的时间序列数据可视化:实用指南与实例分析

    在数据科学和分析领域,时间序列数据的可视化是至关重要的一环。时间序列图表帮助我们识别数据中的趋势、季节性模式和异常值,进而为决策提供依据。...在Python中,常用的时间序列图表库包括Matplotlib、Pandas、Seaborn和Plotly等。本文将介绍如何使用这些库来绘制时间序列图表,并通过实例展示其强大功能。...使用Plotly创建交互式图表前面已经介绍了使用Plotly创建简单的交互式时间序列图表。下面进一步展示如何在Plotly中添加交互功能,如缩放、平移和悬停提示。...案例2:气候变化研究气候变化研究中,温度、降水量等气象数据的时间序列分析可以帮助我们了解气候变化趋势。我们可以绘制长期气象数据的时间序列图表,并进行季节性分解和趋势分析。...结论时间序列图表在多个领域中都有广泛的应用,通过Python中的各种绘图库和数据分析工具,我们可以方便地对时间序列数据进行可视化和分析。

    26920

    创美时间序列【Python 可视化之道】

    ()以上是一些常见的时间序列分析技术和在Python中实现它们的方法。...总结在本文中,我们探讨了如何使用Python可视化库创建漂亮的时间序列图表。首先,我们介绍了在准备工作中需要安装的Python库,包括Pandas、Matplotlib和Seaborn。...然后,我们提供了两个示例来演示如何创建时间序列图表:股票价格时间序列图表:我们使用了Pandas来读取股票价格数据,并使用Seaborn的lineplot函数绘制了股票价格的时间序列图表,以展示股票价格随时间的变化趋势...气温时间序列图表:我们同样使用Pandas来读取气温数据,并使用Seaborn的lineplot函数绘制了气温的时间序列图表,以展示气温随时间的变化趋势。...接着,我们讨论了一些常见的时间序列数据分析技术,包括季节性分解、移动平均线和自相关图,并提供了在Python中实现这些技术的示例代码。

    18710

    matlab中plot函数的功能及用法_plot绘制什么图

    /article/details/51153058 MATLAB中plot函数常常被用于绘制各种二维图像,其用法也是多种多样,本文仅介绍plot函数的基本用法——使用plot函数绘制二维点图和线图。...plot函数的一般调用形式如下: plot(X, Y, LineSpec) 其中X由所有输入点坐标的x值组成,Y是由与X中包含的x对应的y所组成的向量。...注意 在同时绘制多条曲线时,如果没有指定曲线属性,plot按顺序循环使用当前坐标系中ColorOrder和LineStyleOrder两个属性。...定义y向量中的值为x向量的sine值。...在不关闭绘图窗口的前提下,还可以为图像添加标题,x轴和y轴标签,例如: xlabel(‘x’) ylabel(‘sin(x)’) title(‘Plot of the Sine Function’)

    3.3K20

    NumPy和Pandas中的广播

    例如,有一项研究测量水的温度,另一项研究测量水的盐度和温度,第一个研究有一个维度;温度,而盐度和温度的研究是二维的。维度只是每个观测的不同属性,或者一些数据中的行。...Pandas中的广播 Pandas的操作也与Numpy类似,但是这里我们特别说明3个函数,Apply、Applymap和Aggregate,这三个函数经常用于按用户希望的方式转换变量或整个数据。...对于这些例子, 我们首先导入pandas包,然后加载数据到“df”的变量中,这里使用泰坦尼克的数据集 import pandas as pd df = pd.read_csv("...../input/titanic/train.csv") 1、Apply pandas中的apply函数是一个变量级别的函数,可以应用各种转换来转换一个变量。...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。

    1.2K20

    使用 Pandas resample填补时间序列数据中的空白

    在现实世界中时间序列数据并不总是完全干净的。有些时间点可能会因缺失值产生数据的空白间隙。机器学习模型是不可能处理这些缺失数据的,所以在我们要在数据分析和清理过程中进行缺失值的填充。...本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。 原始数据 出于演示的目的,我模拟了一些每天的时间序列数据(总共10天的范围),并且设置了一些空白间隙。...初始数据如下: 重采样函数 在pandas中一个强大的时间序列函数是resample函数。这允许我们指定重新采样时间序列的规则。...如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...总结 有许多方法可以识别和填补时间序列数据中的空白。使用重采样函数是一种用来识别和填充缺失的数据点简单且有效的方法。这可以用于在构建机器学习模型之前准备和清理数据。

    4.4K20

    pandas中的loc和iloc_pandas loc函数

    大家好,又见面了,我是你们的朋友全栈君。...目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd....loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是: data.loc["b","B"] 因为行标签为b,列标签为B,同理,那么4就是data...5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开,记住,.loc...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是

    1.2K10

    时间序列的重采样和pandas的resample方法介绍

    在本文中,我们将深入研究Pandas中重新采样的关键问题。 为什么重采样很重要? 时间序列数据到达时通常带有可能与所需的分析间隔不匹配的时间戳。...Pandas中的resample()方法 resample可以同时操作Pandas Series和DataFrame对象。它用于执行聚合、转换或时间序列数据的下采样和上采样等操作。...下面是resample()方法的基本用法和一些常见的参数: import pandas as pd # 创建一个示例时间序列数据框 data = {'date': pd.date_range(...在时间序列数据分析中,上采样和下采样是用来操纵数据观测频率的技术。...重采样是时间序列数据处理中的一个关键操作,通过进行重采样可以更好地理解数据的趋势和模式。 在Python中,可以使用Pandas库的resample()方法来执行时间序列的重采样。 作者:JI

    1.1K30

    一个时间序列可视化神器:Plotnine

    时间序列图 绘制时间序列图是时间序列分析的第一步。时间序列图是一种线形图,用于展示数据值随时间的变化趋势。...+ p9.theme(figure_size=(8,3)) 时间序列图 通过观察时间序列图,我们可以快速发现数据中存在的一些基本模式,如趋势、周期性等。...在示例时间序列中,我们可以看到平均值在 3 月份最低。在某些月份(例如 5 月),该序列显示出强劲的正趋势。 分组密度图 现实中的时间序列数据往往会受到各种因素的干扰和影响,导致数据模式产生变化。...写在最后 探索性数据分析是时间序列分析和预测的基础环节。本文介绍了6种有助于探索时间序列内在模式和结构的可视化图形技术: 时间序列图: 直观展示数据随时间的变化趋势,发现潜在的趋势和周期性。...自相关系数图: 绘制不同滞后阶数下的自相关系数,判断序列中趋势和周期性的存在。 季节子序列图: 根据季节周期对序列分组,展现不同季节下的数据模式。

    72021

    探索数据之美:Seaborn 实现高级统计图表的艺术

    时间序列图时间序列图是一种用于显示时间序列数据的图表类型,通常用于观察数据随时间变化的趋势和周期性。Seaborn 中的 lineplot 函数可以用于绘制时间序列图。...以下是一个简单的示例:# 创建示例时间序列数据import pandas as pddates = pd.date_range(start='2024-01-01', end='2024-01-10')...Seaborn 中的 pairplot 函数可以绘制简单多变量图,支持在同一个图表中显示变量之间的散点图和单变量分布图。...Seaborn 中的 pairplot 函数可以绘制成对关系图,支持在同一个图表中显示变量之间的散点图和单变量分布图。...时间序列图:展示时间序列数据变化趋势的图表类型。分面绘图:用于同时可视化多个子数据集的图表类型。分类数据图:用于可视化分类变量之间关系的图表类型。分布对比图:用于比较不同组之间分布情况的图表类型。

    30910

    FizzBuzz的UML类图和序列图

    创建游戏和玩游戏都在 Teacher 的 play 方法中调用,那么 play 方法在 UML 交互图中画得有没有问题呢? ? UMLChina潘加宇: 简答如下: (1)左侧的标注是错误的。...OOA和OOD的区别,也就是分析和设计的区别,在于是否涉及到非核心域的知识,而不是用了什么图。 上半部的类图和下半部的序列图,都只涉及到核心域的知识,都属于OOA。...系统之所以能够输出符合条件的数字,原因不是记住了Game和Rule的关系,实际上系统根本不需要Teacher类和Game类。Rule可以留下来。...可参见《软件方法》第8章 8.1.6.4里提到的错误,类图长得像用例图,以及图8-52和图8-53。 必须把规则显式化,封装在实体类中,而不是藏在什么"算法"里面。...长长的"算法"中定义的变量,往往才是候选的实体类。合适的类应该是"数字"、"特殊数字"、"匹配规则"等。

    56020

    PowerBI中的箱型图(box plot)

    当然,不同的箱型图,指标也不尽然全都一样,比如PowerBI中的一个可视化工具Box Whisker chart就是其中的一种,又叫做盒须图。 所以就用Box Whisker chart来说明。...比如我们选择销售表中的各分公司、销售员和销售额可以得到如下的箱型图: ?...对于B分公司来说,平均值与中位数差距很大,说明“贫富差距”很大,有几个销售员的业绩特别好,是整个集团的领头羊,而其他的销售员其实和其他分公司没什么区别。...我们再从时间维度来查看这个分公司G今年各月的情况: ?...而我们也不得不关注F和I分公司,中位数和均值都靠后,尤其是I分公司,连最大值都只与B分公司的均值差不多,所以确实应该多关注一些。

    5.8K21
    领券