首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    6.2K10

    Pandas分组与聚合1.分组 (groupby)一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy二、GroupBy对象支持迭代操作三、GroupBy对象可以转换成

    文章来源:Python数据分析 1.分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程....groupby(df_obj['key1']))) 运行结果: pandas.core.groupby.DataFrameGroupBy'> pandas.core.groupby.SeriesGroupBy...对象可以转换成列表或字典 示例代码: # GroupBy对象转换list print(list(grouped1)) # GroupBy对象转换dict print(dict(list(grouped1...按列分组、按数据类型分组 示例代码: # 按列分组 print(df_obj.dtypes) # 按数据类型分组 print(df_obj.groupby(df_obj.dtypes, axis=1)...对不同的列分别作用不同的聚合函数,使用dict 示例代码: # 每列作用不同的聚合函数 dict_mapping = {'data1':'mean', 'data2':'

    24.9K51

    pandas之分组groupby()的使用整理与总结

    文章目录 前言 准备 基本操作 可视化操作 REF 前言 在使用pandas的时候,有些场景需要对数据内部进行分组处理,如一组全校学生成绩的数据,我们想通过班级进行分组,或者再对班级分组后的性别进行分组来进行分析...,这时通过pandas下的groupby()函数就可以解决。...在使用pandas进行数据分析时,groupby()函数将会是一个数据分析辅助的利器。...groupby的作用可以参考 超好用的 pandas 之 groupby 中作者的插图进行直观的理解: 准备 读入的数据是一段学生信息的数据,下面将以这个数据为例进行整理grouby()函数的使用...grouped = df.groupby('Gender') print(type(grouped)) print(grouped) pandas.core.groupby.groupby.DataFrameGroupBy

    2.9K10

    在Pandas中实现Excel的SUMIF和COUNTIF函数功能

    pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...图3:Python pandas布尔索引 使用已筛选的数据框架,可以选择num_calls列并计算总和sum()。...可以使用上面的方法循环五个行政区的名称,然后逐个计算,但这有点低效。 使用groupby()方法 pandas库有一个groupby()方法,允许对组进行简单的操作(例如求和)。...在示例中: 组: Borough列 数据列:num_calls列 操作:sum() df.groupby('Borough')['num_calls'].sum() 图5:pandas groupby...虽然pandas中没有SUMIF函数,但只要我们了解这些值是如何计算的,就可以自己复制/创建相同功能的公式。

    11.3K30

    Pandas必会的方法汇总,数据分析必备!

    今天来分享一些Pandas必会的用法,让你的数据分析水平更上一层楼。 一、Pandas两大数据结构的创建 序号 方法 说明 1 pd.Series(对象,index=[ ]) 创建Series。...columns和index为指定的列、行索引,并按照顺序排列 举例:用pandas创建数据表: df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006...9 reindex 通过标签选取行或列 10 get_value 通过行和列标签选取单一值 11 set_value 通过行和列标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc...举例:判断city列的值是否为北京 df_inner['city'].isin(['beijing']) 七、分组的方法 序号 方法 说明 1 DataFrame.groupby() 分组函数 2 pandas.cut...举例:.groupby用法 group_by_name=salaries.groupby('name') print(type(group_by_name)) 输出结果为: pandas.core.groupby.DataFrameGroupBy

    7.4K20

    Pandas必会的方法汇总,建议收藏!

    一、Pandas两大数据结构的创建 序号 方法 说明 1 pd.Series(对象,index=[ ]) 创建Series。...columns和index为指定的列、行索引,并按照顺序排列 举例:用pandas创建数据表: df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006...通过行和列标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。...举例:判断city列的值是否为北京 df_inner['city'].isin(['beijing']) 七、分组的方法 序号 方法 说明 1 DataFrame.groupby() 分组函数 2 pandas.cut...举例:.groupby用法 group_by_name=salaries.groupby('name') print(type(group_by_name) 输出结果为: pandas.core.groupby.DataFrameGroupBy

    6.3K40

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...parse_dates参数,pandas可能会认为该列是文本数据。...将文本转换为datetime类型的另一种方法是使用以下命令: df['Transaction Date'] =pd.to_datetime(df['Transaction Date']) 下面的快速检查显示有...datetime_is_numeric参数还可以帮助pandas理解我们使用的是datetime类型的数据。 图2 添加更多信息到我们的数据中 继续为我们的交易增加两列:天数和月份。...现在,你已经基本了解了如何使用pandas groupby函数汇总数据。下面讨论当使用该函数时,后台是怎么运作的。

    6.2K50

    盘点一道使用pandas.groupby函数实战的应用题目

    一开始以为只是一个简单的去重问题而已,【编程数学钟老师】大佬提出使用set函数,后来有粉丝发现其实没有想的这么简单。目前粉丝就需要编号,然后把重复的编号删除,但是需要保留前边的审批意见。...这么来看,使用set集合的办不到了。 二、实现过程 这里给出两个解决方法,一起来看看吧。...方法一 这个方法来自【(这是月亮的背面)】大佬提供的方法,使用pandas中的groupby函数巧妙解决,非常奈斯!...= data['审批意见'].str.strip(',').str.replace(',+', ',', regex=True) 方法二 这个方法来自【Oui】大佬提供的方法,这个没有考虑处理的数据列中有空白的情况...这篇文章基于粉丝提问,在实际工作中运用Python工具实现了数据批量分组的问题,在实现过程中,巧妙的运用了pandas.groupby()函数,顺利的帮助粉丝解决了问题,加深了对该函数的认识。

    94130

    Pandas进阶|数据透视表与逆透视

    在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...数据基本情况 groupby数据透视表 使用 pandas.DataFrame.groupby 函数,其原理如下图所示。...margins:布尔值,是否分类统计。默认False。 margins_name:分类统计的名称,默认是"All"。 dropna:是否包含全部是NaN的列。默认是True。...id_vars 不需要被转换的列名,在转换后作为标识符列(不是索引列) value_vars 需要被转换的现有列,如果未指明,除 id_vars 之外的其他列都被转换 var_name 自定义列名名称...使用pandas.DataFrame.rename_axis去除columns列的名称 # 第一步,重置索引 df_wide = df_pivot.reset_index() # 重置name,设置为None

    5.7K11

    【小白必看】Python爬虫数据处理与可视化

    datas 使用pandas.DataFrame()方法将二维列表转换为DataFrame对象df,每列分别命名为'类型'、'书名'、'作者'、'字数'、'推荐' 将'推荐'列的数据类型转换为整型 数据统计与分组...df.describe() df.groupby('类型').count() 使用describe()方法对数据进行统计描述,包括计数、均值、标准差、最小值、最大值等 使用groupby()方法按'...df[df.类型 == '玄幻魔法'].sort_values(by='推荐') 使用布尔索引筛选出'类型'为'玄幻魔法'的行,并按'推荐'列进行升序排序 数据保存 df = pd.DataFrame(...pandas库将二维列表datas转换为DataFrame对象df,并为每一列命名 df['推荐'] = df['推荐'].astype('int') # 将推荐列的数据类型转换为整型 df.describe...() # 使用describe()方法获取数据的统计描述信息 df.groupby('类型').count() # 使用groupby()方法按照类型列进行分组,然后使用count()方法统计每个分组中的数量

    82810

    掌握这些 NumPy & Pandas 方法,快速提升数据处理效率

    Pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...Pandas Pandas库建立在NumPy上,并为Python编程语言提供了易于使用的数据结构和数据分析工具。...Stack: 将数据的列索引转换为行索引(列索引可以简单理解为列名) Unstack: 将数据的行索引转换为列索引 >>> stacked = df5.stack() >>> stacked.unstack...id_vars: 不需要被转换的列名。 value_vars: 需要转换的列名,如果剩下的列全部都要转换,就不用写了。 var_name和value_name: 是自定义设置对应的列名。...col_level : 如果列是MultiIndex,则使用此级别。 宽数据--->>长数据,有点像用excel做透视跟逆透视的过程。

    4.3K20

    掌握这些 NumPy & Pandas 方法,快速提升数据处理效率!

    Pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...Pandas Pandas库建立在NumPy上,并为Python编程语言提供了易于使用的数据结构和数据分析工具。...Stack: 将数据的列索引转换为行索引(列索引可以简单理解为列名) Unstack: 将数据的行索引转换为列索引 >>> stacked = df5.stack() >>> stacked.unstack...id_vars: 不需要被转换的列名。 value_vars: 需要转换的列名,如果剩下的列全部都要转换,就不用写了。 var_name和value_name: 是自定义设置对应的列名。...col_level : 如果列是MultiIndex,则使用此级别。 宽数据--->>长数据,有点像用excel做透视跟逆透视的过程。

    5.6K20

    pandas分组聚合转换

    () )['Height'].mean( ) Groupby对象 最终具体做分组操作时,调用的方法都来自于pandas中的groupby对象,这个对象定义了许多方法,也具有一些方便的属性。...分组之后, 如果走聚合, 每一组会对应一条记录, 当分组之后, 后续的处理不要影响数据的条目数, 把聚合值和每一条记录进行计算, 这时就可以使用分组转换(类似SQL的窗口函数) def my_zscore...']],因此所有表方法和属性都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中    import pandas as pd data =...当apply()函数与groupby()结合使用时,传入apply()的是每个分组的DataFrame。这个DataFrame包含了被分组列的所有值以及该分组在其他列上的所有值。

    1.4K10

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..

    3.3K00

    Pandas

    方法 head(): tail(): 创建 DataFrame 创建 DataFrame 的方式有很多种,一般比较常用的是利用一个字典或者数组来进行创建 import pandas as pd import...两个函数可以用来转换数据还可以用来创建时间序列数据,其参数非常类似。...缺失值处理 缺失值识别: pandas.DataFrame.isnull()和 pandas.DataFrame.notnull()方法识别缺失值和非缺失值,两个方法会返回一个与输入同型的布尔df。...columns:列分组键 values:数值计算键 aggfunc: 聚合函数 ,默认为平均值函数 margins: 接收布尔值,表示是否对透视表的行和列进行汇总 dropna:是否删除全为Nan的列,...对于非数值类数据的统计可以使用astype方法将目标特征的数据类型转换为category类别 Pandas 提供了按照变量值域进行等宽分割的pandas.cut()方法。

    10.9K31
    领券