首页
学习
活动
专区
圈层
工具
发布

在pandas中使用数据透视表

经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...False*, *dropna=True*, *margins_name='All'*, *observed=False*) 参数解释: data:dataframe格式数据 values:需要汇总计算的列...:聚合函数或函数列表,默认为平均值 fill_value:设定缺失替换值 margins:是否添加行列的总计 dropna:默认为True,如果列的所有值都是NaN,将不作为计算列,False时,被保留...的总销售量,并汇总计算 result4 = pd.pivot_table(data,index=['城市'],columns=['商品类别'],aggfunc=[np.sum],values=['数量'

4.3K20

在pandas中使用数据透视表

pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...False*, *dropna=True*, *margins_name='All'*, *observed=False*) 参数解释: data:dataframe格式数据 values:需要汇总计算的列...:聚合函数或函数列表,默认为平均值 fill_value:设定缺失替换值 margins:是否添加行列的总计 dropna:默认为True,如果列的所有值都是NaN,将不作为计算列,False时,被保留...注意,在所有参数中,values、index、columns最为关键,它们分别对应excel透视表中的值、行、列: ?...看每个城市(行)每类商品(列)的总销售量,并汇总计算 result4 = pd.pivot_table(data,index=['城市'],columns=['商品类别'],aggfunc=[np.sum

4.1K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【DAX 系列】总计行问题终极解决方案

    我晕,这是什么鬼~ 左边的蓝色框反映了前 3 种情况,即: 单列总计 多列总计,但属于同一个表 多列总计,且不属于同个表,但有共同的桥表 右边的蓝色框反映了第 4 种情况,即: 多列总计,彻底独立不同表...其实,平时我们使用的度量值是[KPI.Row],之所以出现总计行问题,也是因为没有考虑总计行问题。 在第二步中谈到的兼容计算,就是为了兼容元素,小计,总计,外部筛选等苛刻条件,保持极高的用户友好。...【情况3】多列总计,不同表,同桥 这种情况更加复杂,多列来自不同的表,当然,有个特点是他们有一个共同的桥。 什么是桥表? 在多个一对多关系中,作为共享的多端的表,就是桥表。...度量值: Topic.Value.Display.FromMultiTable.ButSameBirdge = // 多列总计,多列来自不同的表,但共享一个桥表 // 什么是桥表,在多个一对多关系中,作为共享的多端的表...总结 通过本文我们彻底给出了一以贯之的 DAX 计算套路,它实现了如下特点: 可用于元素行计算 可用于小计行计算 可用于总计行计算 满足外部所有筛选有效 可以应对单列分组 可以应对多列分组,同表 可以应对多列分组

    4.1K20

    数据城堡参赛代码实战篇(一)---手把手教你使用pandas

    在上一篇文章中,小编带大家回顾了参赛的心路历程,虽然看上去生动有趣,十分轻松,但是小编们在背后也是付出了不少的汗水呀。本篇,小编文文将带你一起分析如何用pandas来对官方给出的数据进行处理和分析。...可以简单理解为一个数据表,列索引为数据表中除主键外的一个个字段,行索引相当于数据表中每一条数据的主键值。...2.1 恩格尔系数计算 既然官方的一卡通数据给出了消费类别,有食品、超市、淋浴等等,我们很容易想到的是恩格尔系数,它表示食品支出占一个人总支出的比重。...没错,pandas也提供了数据透视表的功能,相对于使用groupby来说,数据透视表更加的便捷快速,代码如下: #第一个参数指定我们需要计算的列,第二个参数指定行标签,第三个参数代表列标签, #aggfunc...3)计算恩格尔系数 对于上一节中的得到的汇总数据,我们首先需要计算学生的总消费金额,具体如下: #使用sum()方法 #指定axis=1,表示对每一行的数据进行加总,默认为0 #将计算的结果赋值到‘总计

    1.6K40

    Excel公式练习44: 从多列中返回唯一且按字母顺序排列的列表

    本次的练习是:如下图1所示,单元格区域A2:E5中包含一系列值和空单元格,其中有重复值,要求从该单元格区域中生成按字母顺序排列的不重复值列表,如图1中G列所示。 ?...TRUE;TRUE,TRUE,FALSE,TRUE,TRUE;TRUE,FALSE,FALSE,TRUE,TRUE}/COUNTIF(Range1,Range1&"")) 接着解析COUNTIF部分,该部分计算...在单元格G1的主公式中: =IF(ROWS($1:1)>$H$1,"", 如果公式向下拖拉的行数超过单元格H1中的数值6,则返回空值。 3....唯一不同的是,Range1包含一个4行5列的二维数组,而Arry4是通过简单地将Range1中的每个元素进行索引而得出的,实际上是20行1列的一维区域。...:上述数组中非零值的位置表示在该区域内每个不同值在该数组中的首次出现,因此提供了一种仅返回唯一值的方法。

    6.6K31

    Pandas 学习手册中文第二版:11~15

    具体而言,在本章中,我们将介绍: 数据分析的拆分,应用和合并模式概述 按单个列的值分组 访问 Pandas 分组的结果 使用多列中的值进行分组 使用索引级别分组 将聚合函数应用于分组数据 数据转换概述...拆分数据后,可以对每个组执行以下一种或多种操作类别: 聚合:计算聚合统计信息,例如组均值或每个组中项目的计数 转换:执行特定于组或项目的计算 过滤:根据组级计算删除整个数据组 最后一个阶段,合并,由 Pandas...具体而言,在本章中,我们将完成以下任务: 从 Google 财经中获取和整理股票数据 绘制时间序列价格 绘制交易量序列数据 计算简单的每日百分比变化 计算简单的每日累计收益 将从数据每日重新采样为每月的收益...但是,当我们使用这些值的累积乘积(称为每日累积收益)时,便可以查看股票值随时间的变化。 那是我们的下一个任务。...计算股票的简单每日累计收益 简单的累积每日收益是通过计算每日百分比变化的累积乘积来计算的。

    4.7K20

    3 个不常见但非常实用的Pandas 使用技巧

    To_period 在 Pandas 中,操作 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...Cumsum 和 groupby cumsum 是一个非常有用的 Pandas 函数。它计算列中值的累积和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类的累积总和列包含为每个类单独计算的累积值总和。 3. Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。

    1.7K10

    【Python量化投资】基于技术分析研究股票市场

    Pandas数值运算通常以向量方式进行,这样可以取两列的全部差值: ? 在最后一个可用交易日上,42日趋势线远远高于252趋势线。...尽管两个趋势列中的项目数量不相等,pandas通过在相应的指数位置放入NaN处理这种情况: ? 现在生成我们的投资机制,此处假定信号阈值为50: ?...所以,需要先计算对数收益率。...其中,shift方法按照所需指数输入项数量移动时间序列----这里,每移动一个交易日,就能得到每日的对数收益率: 而基于趋势的投资策略的收益,将Regime列乘以下一天的Returns列(用“昨天”的头寸得出今天的收益...所以比较指数累计持续收益和我们所用策略的累积持续收益即可: ?

    2K90

    3 个不常见但非常实用的Pandas 使用技巧

    1、To_period 在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...它计算列中值的累积和。以下是我们通常的使用方式: df["cumulative_sum"] = df["amount"].cumsum() df.head() 这样就获得了金额列值的累积总和。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...df[df["class"]=="A"].head() 类·的累积总和列包含为每个类单独计算的累积值总和。 3、Category数据类型 我们经常需要处理具有有限且固定数量的值的分类数据。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。

    2.2K30

    熟练掌握 Pandas 透视表,数据统计汇总利器

    pivot_table 可以把一个大数据表中的数据,按你指定的"分类键"进行重新排列。...", fill_value="填充缺失值的标量值", margins="布尔值,是否添加行和列的总计,默认是 False", margins_name="总计行和列的名称,默认是...All", dropna="布尔值,是否删除所有结果为全 NaN 的列,默认是 True", observed="布尔值,对于分类列,是否只显示实际出现的类别,默认是 False",...快速上手系列算上本文是更新了 8 篇,其他文章如下: Python 中的 pandas 快速上手之:概念初识 pandas 快速上手系列:自定义 dataframe 读 DataFrame 不只是读...DataFrame ,还能读出这么多信息 熟练掌握 Pandas 合并术,数据处理不再伤脑筋 玩转 Pandas unique方法,告别数据重复烦恼 谜一样的空值?

    1.2K00

    手把手教你用 pandas 分析可视化东京奥运会数据!

    列,但是其与 df1 有一个共同列 国家id 为了给 df2 新增一列 国家名称 列,一个自然的想法就是通过 国家id 列将两个数据框进行合并,在 pandas 中实现,也不是什么困难的事情 temp...,注意是查询而不是筛选,所以使用上上一题的方法将会报错 result.query("国家 == ['中国']") 个性化查看 如何将上一题的结果进一步突出展示,可以使用 pandas 中的 style...pd.pivot_table(df2,values = ['奖牌类型'],index = ['运动类别','国家'],aggfunc = 'count') 数据计算 接下来让我们计算中国每日总奖牌数量...最后,计算前十名各国每日奖牌数量统计,注意:对于第一天没有数据的国家用0填充,其余时间的缺失值用上一日数据填充。...本文全部内容均取自「pandas进阶修炼300题」中实战案例3,如果你也想真实操作一遍,可以点击下方文章查看如何下载数据与源码~ 点击下载「pandas进阶修炼300题」

    1.8K42

    数据分组

    数据分组就是根据一个或多个键(可以是函数、数组或df列名)将数据分成若干组,然后对分组后的数据分别进行汇总计算,并将汇总计算后的结果合并,被用作汇总计算的函数称为就聚合函数。...Python中对数据分组利用的是 groupby() 方法,类似于sql中的 groupby。...1.分组键是列名 分组键是列名时直接将某一列或多列的列名传给 groupby() 方法,groupby() 方法就会按照这一列或多列进行分组。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算...有时不需要所有的列进行计算,这时就可以把想要计算的列(可以是单列,可以是多列)通过索引的方式取出来,然后在这个基础上进行汇总运算。

    5.7K11

    Python3对多股票的投资组合进行分析「建议收藏」

    import matplotlib.pyplot as plt from pandas import read_excel import numpy as np 2、获取每支股票的收盘价 将股票的每日的收盘价存入数据框...'date' # 日期为索引列 # 输出数据的前5行 print(StockPrices.head()) 3、计算股票的日收益率 计算股票每天的收益率,将数据存储在数据框 StockReturns...三、投资组合的相关性分析 1、投资组合的相关矩阵 相关矩阵用于估算多支股票收益之间的线性关系,可使用pandas数据框内建的 .corr()方法来计算。...可使用pandas数据框内建的 .cov() 方法来计算协方差矩阵。...计算公式如下: 分子计算了差值,说的是将某项投资与代表整个投资类别的基准进行比较,得到超额回报。分母标准差代表收益的波动率,对应着风险,因为波动越大预示着风险越高。

    3.1K31

    Python中得可视化:使用Seaborn绘制常用图表

    Seaborn提供以下功能: 面向数据集的API来确定变量之间的关系。 线性回归曲线的自动计算和绘制。 它支持对多图像的高级抽象绘制。 可视化单变量和双变量分布。...从Kaggle获得的谷歌播放商店数据集 现在,让我们看看如果我们绘制来自上述数据集的“Rating”列的分布图是怎样的, #importing all the libraries import numpy...首先,我们将对内容Rating列进行一些数据清理/挖掘,并检查其中的类别。...Rating列数 根据上面的输出,由于“只有18岁以上的成年人”和“未分级”的数量比其他的要少得多,我们将从内容分级中删除这些类别并更新数据集。...更新数据集后的Rating计数 现在,让我们为Rating列中出现的类别绘制饼图。

    7.7K30

    懂Excel轻松入门Python数据分析包pandas(二十一):透视表

    此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...pandas 中添加这2列是非常简单 "Excel 透视表是百分比呀" pandas 透视表功能没有参数设置,因为本身透视出来的还是一个 DataFrame ,这可以利用之前学到的一切技巧来为这个...下面是 Excel 透视表结果: 接着是 pandas 实现: - 修改 index 参数为 pclass,即可按船舱等级汇总 - 行9:不想再重复编写那段"非人"看的占比计算,直接调用一个自定义的函数...很简单,pivot_table 中的大部分参数都可以放入多个字段(跟 Excel 透视表操作一样): - index 参数传入多个字段的列表 从结果看到,每个等级的船舱还是"女性比男性更可能生还" "...解决思路就是:把 ticket 列内容相同的归为一组,组内有多于1行记录的,就是有小伙伴一起上船的 相信一直看本系列的小伙伴马上就知道,这在 pandas 中不就是分组操作吗!

    2.1K20

    从单模态到多模态AI Agent在情感计算中的深度学习方法演进

    从单模态到多模态AI Agent在情感计算中的深度学习方法演进一、引言情感分析(Sentiment Analysis)是自然语言处理(NLP)与计算机视觉(CV)中一项重要任务。...传统的情感分析主要依赖于文本数据,但在现实应用中,情感往往通过 语言、语音、表情、姿态 等多模态信号共同传达。因此,结合 多模态深度学习 的 AI Agent 在情感理解中具有广阔的前景。...本文将探讨AI Agent如何在多模态情感分析中建模,并通过深度学习方法实现高效的情感识别。...在多模态情感分析中,它的任务包括:感知:获取文本、语音、图像等多模态数据。推理:利用深度学习模型融合不同模态的特征。交互:根据情感结果进行反馈(如客服机器人根据用户情绪调整语气)。...情感分类:通过深度学习分类器(如Transformer或多模态注意力机制)预测情绪类别。

    39411

    Pandas 学习手册中文第二版:6~10

    -2e/img/00263.jpeg)] 可以将多个列移至索引,从而形成一个层次/多索引。...很好的例子是一个序列的累积乘积和累积和。 以下代码演示了累积积的计算。...当应用于DataFrame时,.describe()将计算每列的摘要统计信息。 以下代码为omh中的两只股票计算这些统计数据。...这可以是正值或负值,因此我们对结果求平方以确保负值对结果有累积影响。 然后将这些值相加并除以测量值减 1,得出差值平均值的近似值。 在 Pandas 中,使用来计算方差。 var()方法。...Pandas 已经意识到,文件的第一行包含列名和从数据中批量读取到数据帧的名称。 读取 CSV 文件时指定索引列 在前面的示例中,索引是数字的,从0开始,而不是按日期。

    3.1K20

    懂Excel轻松入门Python数据分析包pandas(二十一):透视表

    : Excel 透视表中的 列标签 - 参数 values:Excel 透视表中的 数值区域 - 参数 aggfunc:Excel 透视表中的 数值区域 的字段的统计方式(Excel 默认是计数) "...2个参数,因为 pandas 中添加这2列是非常简单 "Excel 透视表是百分比呀" pandas 透视表功能没有参数设置,因为本身透视出来的还是一个 DataFrame ,这可以利用之前学到的一切技巧来为这个...下面是 Excel 透视表结果: 接着是 pandas 实现: - 修改 index 参数为 pclass,即可按船舱等级汇总 - 行9:不想再重复编写那段"非人"看的占比计算,直接调用一个自定义的函数...很简单,pivot_table 中的大部分参数都可以放入多个字段(跟 Excel 透视表操作一样): - index 参数传入多个字段的列表 从结果看到,每个等级的船舱还是"女性比男性更可能生还" "...解决思路就是:把 ticket 列内容相同的归为一组,组内有多于1行记录的,就是有小伙伴一起上船的 相信一直看本系列的小伙伴马上就知道,这在 pandas 中不就是分组操作吗!

    1.5K50

    pandas每天一题-题目8:去重计数的多种实现方式

    这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。...这个项目从基础到进阶,可以检验你有多么了解 pandas。 我会挑选一些题目,并且提供比原题库更多的解决方法以及更详尽的解析。 计划每天更新一期,希望各位小伙伴先自行思考,再查看答案。...如果对你有帮助,记得转发推荐给你的好友! 上期文章:pandas每天一题-题目7:批量列计算 后台回复"数据",可以下载本题数据集 如下数据: 数据描述: 此数据是订单明细表。...---- 方式2 之所以说上一种方式是不准确,是因为没有考虑到空值的问题。 len 函数不会忽略空值(nan) ,因此如果列中有空值,那么就比正确结果数量多。...: 这种方式个人认为最合适 ---- 方式4 pandas 为列(Series)提供了一个快速汇总计数方法: df.order_id.value_counts() Series.value_counts

    3.1K21
    领券