import numpy as np import pandas as pd from pandas import Series, DataFrame 主要内容 填充值处理 fill_value 翻转功能...sorting sort_index():按照索引进行排序 axis指定行和列 ascending指定升序和降序 sort_values(): 按照值对S型数据进行排序:缺失值放到末尾 对DF数据进行排序...,通过by指定某个列属性 多个列进行排序,传入名称的列表 obj = pd.Series(range(4), index=['d', 'a', 'b', 'c']) obj.sort_index() a...直接查看索引index的is_unique()属性 索引重复的标签返回多个值 汇总和统计 sum():返回含有列的和的S型数据 传⼊axis='columns’或axis=1将会按⾏进⾏求和 axis...=0:表示行;axis=1:表示列 skipna:排除缺失值,默认值是True idxmax()/idxmin():返回最大值或者最小值的索引 describe:返回多个统计值 df = pd.DataFrame
按值排序 sort_values(by='column name') 根据某个唯一的列名进行排序,如果有其他相同列名则报错。...(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引。...因为现在有两层索引,当通过外层索引获取数据的时候,可以直接利用外层索引的标签来获取。 当要通过内层索引获取数据的时候,在list中传入两个元素,前者是表示要选取的外层索引,后者表示要选取的内层索引。...sortlevel() .sortlevel( )先对外层索引进行排序,再对内层索引进行排序,默认是升序。...,axis=1按行统计 skipna 排除缺失值, 默认为True 示例代码: df_obj.sum() df_obj.max() df_obj.min(axis=1, skipna=False
在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...在 Pandas 中,您可以直接对整列进行操作。 pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。...按值排序 Excel电子表格中的排序,是通过排序对话框完成的。 pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。...在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。
= pd.DataFrame(d)# 排序前print(df)# 排序后print(df.sort_index())上面代码中,对 DataFrame 对象按照行索引进行了升序排序。...当不传入参数时,默认按照行索引进行升序排序,我们也可以通过指定参数来按照列索引进行排序。...= pd.DataFrame(d)# 排序前print(df)# 排序后print(df.sort_index(axis=1))上面代码中,按照列索引进行了升序排序。...= pd.DataFrame(d)# 排序前print(df)# 排序后# 按列索引进行降序排序print(df.sort_index(axis=1, ascending=False))# 按行索引进行降序排序...当对一个 DataFrame 对象进行排序时,你可能希望根据一个或多个列中的值进行排序。将一个或多个列的名字传递给 sort_values 的 by 选项即可达到该目的。
在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...对 DataFrame 的列进行排序 使用 DataFrame 轴 使用列标签进行排序 在 Pandas 中排序时处理丢失的数据 了解 .sort_values() 中的 na_position 参数...Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...这类似于使用列对电子表格中的数据进行排序的方式。 熟悉 .sort_index() 您用于.sort_index()按行索引或列标签对 DataFrame 进行排序。...您可以.set_index()在 pandas 文档中阅读有关使用的更多信息。 按索引降序排序 对于下一个示例,您将按索引按降序对 DataFrame 进行排序。
Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...通常,您希望通过一列或多列的值对 DataFrame 中的行进行排序: 上图显示了使用.sort_values()根据highway08列中的值对 DataFrame 的行进行排序的结果。...这类似于使用列对电子表格中的数据进行排序的方式。 熟悉 .sort_index() 您用于.sort_index()按行索引或列标签对 DataFrame 进行排序。...您可以.set_index()在 pandas 文档中阅读有关使用的更多信息。 按索引降序排序 对于下一个示例,您将按索引按降序对 DataFrame 进行排序。...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(
当选择标签作为索引,会选择数据尾部,当为整数索引,则不包括尾部。例如列表a[0, 1, 2, 3, 4]中,a[1:3]的值为1,2;而pandas中为1,2,3。...直接选择中,frame[[列名,列名]]表示选择列,frame[:3]表示选择行。 loc是根据轴标签进行选择,frame[行标签1,[列名,列名]]。...iloc是根据整数标签进行选择,frame[:1,[1,2]]选择第一行的第一、二列。...Numpy的通用函数(逐元素数组方法)对pandas对象也有效。...在sort_index中,可以传入axis参数和ascending参数进行排序,默认按索引升序排序,当为frame1.sort_index(axis=1, ascending=False)表示在列上降序排列
,均值,中位数,只可用于数值型数据 transpose 转置,也可用T来操作 sort_index 排序,可按行或列index排序输出 sort_values 按数据值来排序 4.df进行取值和简单处理...5.df.T 横纵坐标进行对调 6.df.sort_index(axis=0) 根据axis=0或者1按照横坐标或者纵坐标进行排序 7.df.sort_values('按照的对象名称') 按照值进行排序...,默认是竖着排序,也可以通过设置axis=0或者1进行修改,默认升序 8.df里的值按行取行 取单行:用切片进行df[0:1]取第一行,但是开始的话横纵坐标是不算在里面的,这里是横坐标的索引 取多行:df.loc...[起始横坐标:结束横坐标] 必须是横坐标,纵坐标的名称而不去索引,前后可以相同就取起始横坐标这一行 9.df里的值按列取取列 取某一列,df[这列的对应的横坐标] 取多列,df[[第一列的对应的横坐标,...(subset=['c2']) 删除c2中有NaN值的数据 6.df重空值进行添加 df.fillna(value=10)空值填充10 7.df进行合并 1.pd.concat((df1, df2),
---- 2.6 算术运算和数据对齐 Pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集。...要对行或列索引进行排序(按字典顺序),可使用sort_index方法,它将返回一个已排序的新对象: import pandas as pd obj = pd.Series(range(4), index...时,你可能希望根据一个或多个列中的值进行排序。...对DataFrame的行进行索引时也是如此: import pandas as pd df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a'...(df.sum(axis=1)) NA值会自动被排除,除非整个切片(这里指的是行或列)都是NA。
2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...7.数据排序和排名:Pandas提供了对数据进行排序和排名的功能,可以按照指定的列或条件对数据进行排序,并为每个元素分配排名。...9.时间序列数据处理:Pandas对处理时间序列数据提供了广泛的支持,包括日期范围生成、时间戳索引、重采样等操作。....sum() # 对列进行平均值计算 df['Age'].mean() # 对列进行分组计算 df.groupby('Name')['Age'].mean() 数据的合并和连接 # 按照列进行合并
简单说说 总结分享 > 1 统计一行/一列数据的负数出现的次数 > 2 让dataframe里面的正数全部变为0 > 3 统计某列中各元素出现次数 > 4 修改表头和索引 > 5 修改列所在位置insert...+pop > 6 常用查询方法query > 7 数据存储时不要索引 > 8 按指定列排序sort_values > 9 apply 函数运用 > 10 Pandas数据合并 > 11 Pandas Dataframe...b'].value_counts(normalize=True) 还有sort和ascending,可以按指定方式对统计结果进行排序。...df.to_csv('测试数据.csv', encoding='utf-8-sig', index=None) > 8 按指定列排序sort_values sort_values函数,通过by参数可以指定按哪些列进行排序...> 12 对于列/行的操作 删除指定行/列 # 行索引/列索引 多行/多列可以用列表 # axis=0表示行 axis=1表示列 inplace是否在原列表操作 # 删除df中的c列 df.drop(
(axis=0或’index’)或行索引名(axis=1或’columns’)进行排序。...) print(df2.sort_values(['a','c'])) # 多列排序,按列顺序排序 输出为: 排序2 - 索引排序 .sort_index pandas中提供了一个sort_index...= df.reindex(new_index, fill_value='missing') new_df # 通过fill_value参数,使用指定值对缺失值进行填充 输出为: Out[23]:...1.5.3.1 使用单层索引访问数据 无论是创建Series类对象还是创建DataFrame类对象,根本目的在于对Series类对象或DataFrame类对象中的数据进行处理,但在处理数据之前,需要先访问...变量[第一层索引] 变量[第一层索引][第二层索引] 以上方式中,使用 变量[第一层索引] 可以访问第一层索引嵌套的第二层索引及其对应的数据; 使用 变量[第一层索引][第二层索引] 可以访问第二层索引对应的数据
df.sort_index(axis=1, ascending=False) sort_index可以以轴的标签进行排序。...df.sort(columns='two')df.sort(columns=['one','two'],ascending=[0,1]) DataFrame也提供按照指定列进行排序,可以仅指定一个列作为排序标准...(以单独列名作为columns的参数),也可以进行多重排序(columns的参数为一个列名的List,列名的出现顺序决定排序中的优先级),在多重排序中ascending参数也为一个List,分别与columns...选取第一行到第三行(不包含)的数据df.iloc[:,1]#选取所有记录的第一列的值,返回的为一个Seriesdf.iloc[1,:]#选取第一行数据,返回的为一个Series PS:loc为location...('A').sum()#按照A列的值分组求和df.groupby(['A','B']).sum()##按照A、B两列的值分组求和 对应R函数: tapply() 在实际应用中,先定义groups,然后再对不同的指标指定不同计算方式
apply方法是对DataFram中的每一行或者每一列进行映射。 ?...applymap方法是对DataFram中的每一格进行映射,如下图所示: ?...关键字参数axis,可以填入的值为0或1,0表示对行进行操作,1表示对列进行操作 示例如下: from pandas import Series,DataFrame from numpy import...image.png 7.3 Pandas中的时间序列 pandas通常是用于处理成组日期的,不管这个日期是DataFrame的轴索引还是列。to_datetime方法可以解析多种不同的日期表示形式。...pandas库中的date_range方法可以产生时间日期索引,关键字periods可以指定有多少天。 ? image.png
然后,我们使用sort_values方法按照数学成绩列进行降序排序,并将结果赋值给sorted_df变量。最后,我们使用print函数输出排序后的结果。...这对于对数据集进行分析、筛选以及处理有很大的帮助,能够提高开发效率和数据处理的准确性。sort_values是Pandas库中的一个方法,用于对DataFrame或Series对象中的数据进行排序。...它可以按照指定的列或索引的值对数据进行升序或降序排序。 sort_values方法的参数如下:by:指定按照哪一列或索引进行排序。...可以是列名(字符串类型)或索引(整数类型),也可以是包含多个列名或索引的列表。默认值为None,表示按照所有列的值进行排序。axis:指定排序的轴向,取值为0或1,默认值为0。...按照数学成绩列进行升序排序sorted_df = df.sort_values(by='数学成绩', ascending=True)print(sorted_df)# 按照英语成绩列进行降序排序sorted_df
如果你对pandas的学习很感兴趣,你可以参考我们的pandas教程指导博客(http://www.dataquest.io/blog/pandas-python-tutorial/),里面包含两大部分的内容...col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择 df.iloc[0,:] 第一行 df.iloc[0,0...) 更改索引 df.rename(index=lambda x: x + 1) 批量重命名索引 筛选,排序和分组 df[df[col] > 0.5] col列大于0.5的行 df[(df[col] >...0.5) & (1.7)] 0.7> col> 0.5的行 df.sort_values(col1) 将col1按升序对值排序 df.sort_values(col2,ascending=False)...将col2按降序对值排序 df.sort_values([col1,ascending=[True,False]) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值
引言 在数据分析和处理中,对数据进行排序是常见的需求。Pandas库提供了强大的功能来实现数据的排序操作,无论是单列排序还是多列排序,都能轻松应对。...本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...忽略大小写排序 当列包含字符串时,默认情况下,Pandas会区分大小写进行排序。...解决方案: sorted_df_reset = df.sort_values(by='age').reset_index(drop=True) 多列排序 基本概念 多列排序是指根据多个列的数据值对DataFrame...使用inplace=True直接在原DataFrame上进行排序,避免创建副本。 总结 通过本文的介绍,我们了解了Pandas中单列和多列排序的基本用法、常见问题及其解决方案。
在数据库中,它被称为 "复合主键"。在Pandas中,它被称为MultiIndex(第4部分),索引内的每一列都被称为level。 索引的另一个重要特性是它是不可改变的。...与DataFrame中的普通列相比,你不能就地修改它。索引中的任何变化都涉及到从旧的索引中获取数据,改变它,并将新的数据作为一个新的索引重新连接起来。...一旦在索引中包含了列,就不能再使用方便的df.column_name符号了,而必须恢复到不太容易阅读的df.index或者更通用的df.loc[]。有了MultiIndex。...不要对具有非唯一索引的系列使用算术运算。 比较 对有缺失值的数组进行比较可能很棘手。...Pandas有df.insert方法,但它只能将列(而不是行)插入到数据框架中(而且对序列根本不起作用)。
生成的Series可以按降序或升序排序,通过参数控制包括或排除NA。 在本文中,我们将探讨 Pandas value_counts() 的不同用例。您将学习如何使用它来处理以下常见任务。...默认参数 按升序对结果进行排序 按字母顺序排列结果 结果中包含空值 以百分比计数显示结果 将连续数据分入离散区间 分组并调用 value_counts() 将结果系列转换为 DataFrame 应用于DataFrame...>>> df['Embarked'].value_counts() S 644 C 168 Q 77 Name: Embarked, dtype: int64 2、按升序对结果进行排序...Pandas DataFrame.value_counts() 返回一个包含 DataFrame 中唯一行计数的系列。...(),它返回一个以 num_legs 和 num_wings 作为索引的 MultiIndex 系列。
可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。 ix方法可以使用数值或者字符作为索引来选择行、列。 iloc则只能使用数值作为索引来选择行、列。...选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...列索引前包后不包 print(df.iloc[0:5, 0:5]) 输出结果。...使用比较运算符进行查询,如「== > = 索引。...05 排序 Pandas的排序方法有以下三种。 sort_values、sort_index、sortlevel。 第一个表示按值排序,第二个表示按索引排序,第三个表示按级别排序。
领取专属 10元无门槛券
手把手带您无忧上云