一个例子是使用频率和计数的字符串对分类数据进行分组,使用int和float作为连续值。此外,我们希望能够附加标签到列、透视数据等。 我们从介绍对象Series和DataFrame开始。...PROC PRINT的输出在此处不显示。 下面的单元格显示的是范围按列的输出。列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。...Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。...NaN被上面的“下”列替换为相邻单元格。下面的单元格将上面创建的DataFrame df2与使用“前向”填充方法创建的数据框架df9进行对比。 ? ?
Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...如果数据量较大,再配合numpy中的any()和all()函数就行了。 需要特别注意两点: 如果某一列数据全是空值且包含pd.NaT,np.nan和None会自动转换成pd.NaT。...空值(np.nan、None、pd.NaT)既不是空字符串"",也不是空格" "。...从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...to_replace和value不仅支持Python中的整型、字符串、列表、字典等,还支持正则表达式。
Excel DataFrame 工作表 Series 列 Index 行标题 行 行 NaN 空单元格 DataFrame 在 pandas 中,DataFrame类似于 Excel 工作表。...pandas 有一个DataFrame.sort_values()方法,它接受要按列排序的列列表。...Excel DataFrame 工作表 Series 列 Index 行标题 行 行 NaN 空单元格 DataFrame 在 pandas 中,DataFrame 类似于 Excel 的工作表。...一般术语翻译 pandas Excel DataFrame 工作表 Series 列 Index 行标题 行 行 NaN 空单元格 DataFrame 在 pandas 中,DataFrame 类似于...pandas 有一个DataFrame.sort_values()方法,它接受要排序的列的列表。
在xlwt等读写库的基础上实现一个库操作不同格式的文件。...简单入门:导入pandas> import pandas as pdpandas中最重要的类型DataFrame的介绍:DataFrame 是 Pandas 中的一种抽象数据对象(表格类型),Excel...中的数据都可以转换为 DataFrame 对象。...DataFrame 和 Excel 的属性DataFramesheet 页Series 列Index 行号row 行NaN 空单元格---简单读数据1、读取文件,...names: 默认为None,要使用的列名列表,如不包含标题行,应显示传递header=None index_col: 指定某一列作为,为索引列 usecols: 读取固定的列,usecols
可以是一个字符串,也可以是一个字符串列表。 axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。...可以根据对象的真值来确定转换结果,非零、非空、非空字符串等都会转换为True,其他情况转换为False。...可以将字符串、元组、字典等对象转换为列表。...可以将列表、字符串、字典等对象转换为元组。...可以是单个列名的字符串,也可以是列名列表。 drop:指示是否在新索引中保留原有的列。默认为True,表示将原有的列从DataFrame中删除。 append:指示是否将新的索引添加到原有的索引之后。
() 类似于上例,如果你想把一个DataFrame中某个字符串字段(列)展开为一个列表,然后将列表中的元素拆分成多行,可以使用str.split()和explode()组合,如下例: import pandas...combine_first()方法根据 DataFrame 的行索引和列索引,对比两个 DataFrame 中相同位置的数据,优先取非空的数据进行合并。...如果调用combine_first()方法的 df1 中数据非空,则结果保留 df1 中的数据,如果 df1 中的数据为空值且传入combine_first()方法的 df2 中数据非空,则结果取 df2...中的数据,如果 df1 和 df2 中的数据都为空值,则结果保留 df1 中的空值(空值有三种:np.nan、None 和 pd.NaT)。...中的列 我们可以根据名称中的子字符串过滤 pandas DataFrame 的列,具体是使用 pandas 的DataFrame.filter功能。
在本文中 ShowMeAI 将带大家在 Pandas Dataframe 中完成多条件数据选择及各种呈现样式的设置。...① 突出缺失值 在 Pandas Dataframe 中,我们可以使用 dataframe.style.highlight_null() 为空值着色。...() 使用适当的参数为行/列中的最小值着色。...如下图所示,在图像中,随着值的增加,颜色会从红色变为绿色。你可以设置 subset=None 将这个显示效果应用于整个Dataframe。...可以定义一个函数,该函数突出显示列中的 min、max 和 nan 值。当前是对 Product_C 这一列进行了突出显示,我们可以设置 subset=None来把它应用于整个Dataframe。
中获取列标题列表 如何随机生成 DataFrame 如何选择 DataFrame 的多个列 如何将字典转换为 DataFrame 使用 ioc 进行切片 检查 DataFrame 中是否是空的 在创建...过滤包含某字符串的行 过滤索引中包含某字符串的行 使用 AND 运算符过滤包含特定字符串值的行 查找包含某字符串的所有行 如果行中的值包含字符串,则创建与字符串相等的另一列 计算 pandas group...中每组的行数 检查字符串是否在 DataFrme 中 从 DataFrame 列中获取唯一行值 计算 DataFrame 列的不同值 删除具有重复索引的行 删除某些列具有重复值的行 从 DataFrame...单元格中获取值 使用 DataFrame 中的条件索引获取单元格上的标量值 设置 DataFrame 的特定单元格值 从 DataFrame 行获取单元格值 用字典替换 DataFrame 列中的值...Pandas 获取 CSV 列的列表 找到列值最大的行 使用查询方法进行复杂条件选择 检查 Pandas 中是否存在列 为特定列从 DataFrame 中查找 n-smallest 和 n-largest
Series是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引(index)。...二、Series 1、Series简介 Series是能够保存任何类型数据(整数,字符串,浮点数,Python对象等)的一维标记数组,轴标签统称为index(索引)。...,可以通过索引标签获取和设置值,使用索引标签值检索单个元素,使用索引标签值列表检索多个元素。...列操作 通过字典键可以进行列选择,获取DataFrame中的一列数据。...3 30.0 33.0 # d NaN 4 NaN NaN 通过del可以删除DataFrame的列。
可能会存在有标点符号掺杂/大小写不一致/空格重复出现等问题 6)消灭空值:CustomerID、Description、Country和UnitPrice都出现了NaN值,需要去掉 于是下面就开始后续的数据清洗...后面出来数据,如果遇到错误:说什么float错误,那就是有缺失值,需要处理掉 所以,缺失值有3种:None,NA,NaN 那None和NaN有什么区别呢: None是Python的一种数据类型, NaN...DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) # 默认(axis=0)是逢空值剔除整行,设置关键字参数...axis=1表示逢空值去掉整列 # 'any'如果一行(或一列)里任何一个数据有任何出现Nan就去掉整行, ‘all’一行(或列)每一个数据都是Nan才去掉这整行 DataDF.dropna(how.../pandas.DataFrame.fillna.html#pandas.DataFrame.fillna 1) 用默认值填充- df.fillna(' ') 我们应该去掉那些不友好的 NaN 值。
# .isnull() / .notnull() 判断是否为空值 (None代表空值,NaN代表有问题的数值,两个都会识别为空值) s[s > 50] 输出为: Out[32]: 1 72.9608...如下所示: "二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值、字符串、布尔值等。...Dataframe中的数据以一个或多个二维块存放,不是列表、字典或一维数组结构。...使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,在使用“[索引]”访问数据时会将索引视为列索引...,进而获取该列索引对应的一列数据。
在本文中,基本数据集操作主要介绍了 CSV 与 Excel 的读写方法,基本数据处理主要介绍了缺失值及特征抽取,最后的 DataFrame 操作则主要介绍了函数和排序等方法。...,「headers」为表头字符串组成的列表。...(7)列出所有列的名字 df.columns 基本数据处理 (8)删除缺失数据 df.dropna(axis=0, how='any') 返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴...(9)替换缺失数据 df.replace(to_replace=None, value=None) 使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace...(10)检查空值 NaN pd.isnull(object) 检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。
na_values:指定要替换为NaN的值。可以是标量、字符串、列表或字典。 parse_dates:指定是否解析日期列。默认为False。 date_parser:指定用于解析日期的函数。...read_excel()函数还支持其他参数,例如sheet_name=None可以导入所有工作表,na_values可以指定要替换为NaN的值等。你可以查阅pandas官方文档了解更多详细信息。...注意事项: 读取的JSON文件必须存在并且格式正确,否则函数将会抛出异常。 JSON文件可以包含不同类型的数据,如字符串、数字、布尔值、列表、字典等。...返回值: 如果HTML文件中只有一个表格,则返回一个DataFrame对象。 如果HTML文件中有多个表格,则返回一个包含所有表格的列表,每个表格都以DataFrame对象的形式存储在列表中。...) 以上代码将DataFrame对象df保存为名为’data.xlsx'的Excel文件,在Sheet1中写入数据,不保存索引列,保存列名,数据从第3行第2列开始,合并单元格,使用utf-8编码,使用pandas
、数字和时间这三种常见的类型,此外,空值(NaN,NaT等)也是我们需要处理的数据类型之一。...对于字符串类型,一般不要进行格式设置; 对于数字类型,是格式设置用的最多的,包括设置小数的位数、千分位、百分数形式、金额类型等; 对于时间类型,经常会需要转换为字符串类型进行显示; 对于空值,可以通过...、最小值、NaN等各类值的颜色高亮设置,pandas 已经有专门的函数来处理,配合 axis 参数可以对行或者列进行应用: highlight_max() highlight_min() highlight_null...在 pandas 中,可以使用 DataFrame.style.bar() 函数来实现这个功能,其参数如下: Styler.bar(subset=None, axis=0, color='#d65f5f...其中: apply 通过axis参数,每一次将一列或一行或整个表传递到DataFrame中。对于按列使用 axis=0, 按行使用 axis=1, 整个表使用 axis=None。
index_colint,str,int/str 序列或 False,可选,默认为None 用作DataFrame行标签的列,可以作为字符串名称或列索引给出。...如果后续行的列数少于第一行,则用NaN填充。 可以通过usecols来避免这种情况。这确保了列按原样获取,而尾随数据被忽略。 usecols 类似列表或可调用对象,默认为None 返回列的子集。...NA 和缺失数据处理 na_values 标量、字符串、类似列表或字典,默认为None 附加字符串识别为 NA/NaN。如果传递了字典,则为每列指定特定的 NA 值。...请参见下面的 na values const 以获取默认情况下解释为 NaN 的值列表。 keep_default_na 布尔值,默认为True 是否在解析数据时包括默认的 NaN 值。...None,一个接受单个(浮点数)参数并返回格式化字符串的函数;应用于 DataFrame 中的浮点数。
这些函数的可选参数可能属于几个类别: 索引 可以将一个或多个列视为返回的 DataFrame,并确定是否从文件、您提供的参数或根本不获取列名。...基本类型是对象(字典)、数组(列表)、字符串、数字、布尔值和空值。对象中的所有键都必须是字符串。有几个 Python 库可用于读取和写入 JSON 数据。...像pandas.isna这样的函数抽象了许多烦人的细节。请参阅表 7.1 以获取与处理缺失数据相关的一些函数列表。...如果 DataFrame 中的一列有k个不同的值,您将得到一个包含所有 1 和 0 的k列的矩阵或 DataFrame。...因此,当这些数据中引入缺失数据时,pandas 会将数据类型转换为float64,并使用np.nan表示空值。这导致许多 pandas 算法中出现了微妙的问题。
如下图: 其中表格中的第3行是班级。诸如"一1",表示是一年级1班,最多8个年级。 表格中的1至3列,分别表示"星期"、"上下午"、"第几节课"。 前2列有大量的合并单元格,并且数据量不一致。...---- ---- 我们来看看数据: 注意看左上角有3个 nan ,是因为表格的标题行前3列是空的。 由于前2列有合并单元格,出现了很多 nan。 此外注意看第3列,把课时序号显示成小数。...这是一个list cols[:3]=['day','apm','num'] ,把列表的前3项的 nan ,替换成我们需要的字段名字。...合并单元格很多时候就是第一个有值,其他为空,ffill 填充方式刚好适合这样的情况。 ---- 现在数据美如画了。...---- 重塑 要理解 pandas 中的重塑,先要了解 DataFrame 的构成。
另外,空值类型作为一种特殊类型,需要单独处理,这个在pandas缺失值处理一文中已详细介绍。 数据处理的过程中,经常需要将这些类型进行互相转换,下面介绍一些变量类型转换的常用方法。...pandas中select_dtype函数可以特征变量进行快速分类,具体用法如下: DataFrame.select_dtypes(include=None, exclude=None) include...:列表,想要留下的数据类型,比如float64,int64,bool,object等 exclude:列表,需要排除的数据类型,同上。...比如,当我们遇到'[1,2,3]'这种情况的时候,我们实际想获取里面的列表,但是现在却是个字符串类型,我们可以使用eval函数将''这个外套直接去掉,去掉后自动转换成里面数据类型。...对Series的转换也是一样的。下面的Seires中由于存在nan空值所以类型为object。
领取专属 10元无门槛券
手把手带您无忧上云