首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas | 数据排序

前言 ❝本次我们来介绍,如何使用pandas进行数据的排序,包括Series排序以及DataFrame排序。 ❞ 0. 导入Pandas import pandas as pd 1....数据读取 # 数据读取 data = pd.read_csv("D:/Pandas/mtcars.csv") # 设置pandas的参数(最大列数,行宽,最大列宽)来展示完整信息 pd.set_option...Series排序 函数格式:Series.sort_values(ascending=True, inplace=False) 参数说明: Iascending:默认为True升序排序,为False降序排序...DataFrame排序 函数格式:DataFrame.sort_values(by, ascending=True, inplace=False) 参数说明: by:字符串或者List,单列排序或者多列排序...3.1 单列排序 # 对wt列排序,默认为升序排序,返回一个DataFrame data.sort_values(by = "wt") # 返回结果 cars mpg

68050
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas索引排序详解

    索引排序-sort_index 针对Pandas中索引的排序功能介绍,详细内容参考官网: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html...:axis=0表示行,axis=1表示列 level:如果是多层索引的排序,表示根据指定的索引进行排序,可以是索引号,名称或者多个索引组成的列表 ascending:排序规则,默认是升序 inplace...默认是last sort_remaining: 数据模拟 import pandas as pd import numpy as np df = pd.DataFrame({"name":["Jimmy...后面排序的话,也就是根据全部小写的字段进行排序,所以Math会在name的前面。...‘quicksort’:快速排序 ‘mergesort’:合并排序 ‘heapsort’:堆排序 df.sort_index() .dataframe tbody tr th:only-of-type

    29530

    pandas VS Excel排序-单排序与多重排序

    pandas VS Excel排序-单排序与多重排序 【要求】 1.以总分排序 2.以“部门”+“总分”排序 3.分别输入排序后的名次 【知识点】 pandas.sort_values 与pandas.rank...最大值排名:对于相同的值都取大的排名 降序排名se5.rank(method="first",ascending=False) 【代码汇总】 # -*- coding: UTF-8 -*- import pandas...as pd d=pd.read_excel('pandas VS excel排序-单排序与多重排序.xlsx') print(d) #d.sort_values(by='总分',inplace=True...(d['总分'].rank())这样的排序是所有的列都排序并打印出排序后的“次” d.sort_values(by=['部门','总分'],inplace=True,ascending=[0,0]) d...['总分名次']=d['总分'].rank(ascending=False) d.to_excel("pandas VS excel排序-单排序与多重排序_out.xlsx",index=False)

    72820

    Pandas时间序列处理:日期与时间

    Pandas作为Python中强大的数据分析库,提供了丰富的工具来处理和分析时间序列数据。...本文将由浅入深地介绍Pandas在处理日期和时间时常见的问题、常见报错及如何避免或解决这些问题,并通过代码案例进行解释。一、基础概念1....日期格式转换问题描述:在实际应用中,日期数据往往以字符串形式存在,需要将其转换为Pandas可识别的时间戳格式。 解决方案:使用pd.to_datetime()函数可以轻松实现字符串到时间戳的转换。...该函数支持多种日期格式,并且可以通过参数format指定特定的格式。..._libs.tslibs.np_datetime.OutOfBoundsDatetime: print("时间超出支持范围")四、总结本文介绍了Pandas在处理日期和时间时的基础概念、常见问题及其解决方案

    31410

    数据分析 ——— pandas日期处理(五)

    通过之前的文章,大家对pandas都有了基础的了解,在接下来的文章中就是对pandas的一些补充,pandas对日期处理函数。...一、pandas日期功能 1) 创建一个日期范围 通过指定周期和频率来使用date.range()函数,默认频率为/天 # pandas日期处理 import pandas as pd import...bdate_range()表示商业日期范围,与date_range()不同,它不包括周六和周天 # bdate_range() 商业日期范围,不包括周六和周天 print(pd.bdate_range...import pandas as pd import numpy as np start = pd.datetime(2019, 8,2) end = pd.datetime(2019, 8, 8)...timedelta 1)通过传递字符串,创建timedelta对象: import pandas as pd # 通过传递字符串文字,我们可以创建一个timedelta对象。

    1.4K10

    Pandas数据排序:单列与多列排序详解

    引言 在数据分析和处理中,对数据进行排序是常见的需求。Pandas库提供了强大的功能来实现数据的排序操作,无论是单列排序还是多列排序,都能轻松应对。...本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...忽略大小写排序 当列包含字符串时,默认情况下,Pandas会区分大小写进行排序。...sort_values()方法同样支持多列排序,只需传入一个包含多个列名的列表即可。排序时,Pandas会按照列表中列的顺序依次排序。...使用inplace=True直接在原DataFrame上进行排序,避免创建副本。 总结 通过本文的介绍,我们了解了Pandas中单列和多列排序的基本用法、常见问题及其解决方案。

    24110

    Pandas知识点-排序操作

    数据处理过程中,经常需要对数据进行排序,使数据按指定的顺序排列(升序或降序)。 在Pandas中,排序功能已经实现好了,我们只需要调用对应的方法即可。...为了方便后面进行排序操作,只读取了数据中的前十行,并删除了一些列,设置“日期”和“收盘价”为索引。 ? 读取的原始数据如上图,本文基于这些数据来进行排序操作。 二、DataFrame排序操作 1....如指定level为“收盘价”时,不再是按“日期”排序,而是按“收盘价”排序。...给level传值时,可以传入行索引的key(索引名),如:“日期”、“收盘价”,也可以传入行索引的数值索引,如:0或1,0对应“日期”,1对应“收盘价”。...以上就是Pandas中的排序操作介绍,如果需要数据和代码,可以点击关注公众号“Python碎片”,然后在后台回复“pandas04”关键字获取本文代码和数据。

    1.9K30

    数据分析篇 | Pandas 时间序列 - 日期时间索引

    精准匹配精确索引截断与花式索引日期/时间组件 DatetimeIndex 主要用作 Pandas 对象的索引。...DatetimeIndex 类为时间序列做了很多优化: 预计算了各种偏移量的日期范围,并在后台缓存,让后台生成后续日期范围的速度非常快(仅需抓取切片)。...在 Pandas 对象上使用 shift 与 tshift 方法进行快速偏移。 合并具有相同频率的重叠 DatetimeIndex 对象的速度非常快(这点对快速数据对齐非常重要)。...参阅:重置索引 注意:Pandas 不强制排序日期索引,但如果日期没有排序,可能会引发可控范围之外的或不正确的操作。 DatetimeIndex 可以当作常规索引,支持选择、切片等方法。...101]: 2011-10-31 0.271860 2011-11-30 -0.424972 2011-12-30 0.567020 Freq: BM, dtype: float64 Pandas

    5.5K20

    排序功能(Pandas读书笔记8)

    上期分享了如何读取文件内容,读取文件后我们需要对数据进行清理整理,其中一项常做的就是对原始数据进行排序。今天和大家分享如何使用pandas进行排序。...先导入上一期的测试1文件 一、单条件排序 我们先按照最新价进行排序,方法如下: 代码为:df.sort_index(by = '最新价') 我们发现呈现的结果是整个表按照最新价从低到高排序!...如果我们想从高到低进行排序,需要在sort_index函数中增加一个ascending=False 二、多条件排序 我们先按照涨跌幅进行排序,如果相等,再按照最新价进行排序 为了方便大家对照,给大家放一个局部图...三、最后说明 排序不改变原变量存储内容,如果想排序后永久成立,需要将排序后的数据重新赋值给原变量!

    70860

    pandas数据清洗,排序,索引设置,数据选取

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index...默认保留第一行 df.drop_duplicates(['k1','k2'], take_last=True)# 保留 k1和k2 组合的唯一值的行,take_last=True 保留最后一行 ---- 排序...索引排序 # 默认axis=0,按行索引对行进行排序;ascending=True,升序排序 df.sort_index() # 按列名对列进行排序,ascending=False 降序 df.sort_index...(axis=1, ascending=False) 值排序 # 按值对Series进行排序,使用order(),默认空值会置于尾部 s = pd.Series([4, 6, np.nan, 2, np.nan...]) s.order() df.sort_values(by=['a','b'])#按列进行排序 排名 a=Series([7,-5,7,4,2,0,4]) a.rank()#默认method='average

    3.3K20
    领券