首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

分组后合并分组列中的字符串如何操作?

一、前言 前几天在Python最强王者交流群【IF】问了一个Pandas的问题,如图所示。...下面是他的原始数据: 序号 需求 处理人 1 优化 A 2 优化 B 3 运维 A 4 运维 C 5 需求 B 6 优化 C 7 运维 B 8 运维 C 9 需求 C 10 运维 C 11 需求 B...如果不去重,就不用unique,完美地解决粉丝的问题! 后来他自己参考月神的文章,拯救pandas计划(17)——对各分类的含重复记录的字符串列的去重拼接,也写出来了,如图所示。...这篇文章主要盘点了一个pandas的基础问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【IF】提问,感谢【月神】、【瑜亮老师】给出的思路和代码解析,感谢【dcpeng】等人参与学习交流。

3.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...df.groupby('lv')["num"].transform('mean') df["juncha"] = df["num"] - df["gp_mean"] print(df) # 直接输出结果,省略分组平均值列...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

    3K20

    Python 新手突破瓶颈指南:通过 itertools.groupby 进行数据分组

    工作机制 itertools.groupby() 会对输入的可迭代对象进行分组,返回一个迭代器,该迭代器生成连续键值对,其中每个键值对的键是分组依据,值是一个生成器,生成对应分组的元素。...基本示例 以下是一个简单的示例,演示如何使用 itertools.groupby() 对列表进行分组: import itertools data = [1, 1, 2, 2, 3, 3, 3, 4,...从底层逻辑来看,itertools.groupby() 通过遍历输入的可迭代对象,并根据键函数返回的值进行分组。如果键函数未指定,则默认使用元素本身作为键。...需要注意的是,itertools.groupby() 只会对相邻的元素进行分组,因此在使用之前通常需要对数据进行排序。...itertools.groupby() 的用法,Python 开发者可以在数据处理和分析中编写出更高效、更简洁的代码。

    31110

    Python数据处理从零开始----第二章(pandas)(十一)通过列属性对列进行筛选

    本文主要目的是通过列属性进行列挑选,比如在同一个数据框中,有的列是整数类的,有的列是字符串列的,有的列是数字类的,有的列是布尔类型的。...假如我们需要挑选或者删除属性为整数类的列,就可能需要用到pandas.DataFrame.select_dtypes函数功能 该函数的主要格式是:DataFrame.select_dtypes(include...= None,exclude = None),返回DataFrame列的子集。...返回: subset:DataFrame,包含或者排除dtypes的的子集 笔记 要选取所有数字类的列,请使用np.number或'number' 要选取字符串的列,必须使用‘object’ 要选择日期时间...,请使用np.datetime64,'datetime'或'datetime64' 要选取所有属性为‘类’的列,请使用“category” 实例 新建数据集 import pandas as pd import

    1.6K20

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    如何让pandas根据指定列的指进行partition

    将2015~2020的数据按照同样的操作进行处理,并将它们拼接成一张大表,最后将每一个title对应的表导出到csv,title写入到index.txt中。...更python的做法 朴素想法应该是够用的,但是不美观,不够pythonic,看着很别扭。...boolean index stackoverflow里有人提问如何将离散数据进行二分类,把小于和大于某个值的数据分到两个DataFrame中。...groupby听着就很满足我的需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的列中的元素。...df.groupby('ColumnName')可以进行遍历,结果是一个(name,subDF)的二元组,name为分组的元素名称,subDF为分组后的DataFrame 对df.groupby('ColumnName

    2.7K40

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的“分组”对象可用于分别对每个组执行操作和计算。 例 在下面的示例中,我们使用 groupby() 函数按“名称”列对记录进行分组。然后,我们使用 mean() 函数计算每个学生的平均分数。...Python 方法和库来基于相似的索引元素对记录进行分组。

    23230

    如何使用python连接MySQL表的列值?

    使用 MySQL 表时,通常需要将多个列值组合成一个字符串以进行报告和分析。Python是一种高级编程语言,提供了多个库,可以连接到MySQL数据库和执行SQL查询。...在本文中,我们将深入探讨使用 Python 和 PyMySQL 库连接 MySQL 表的列值的过程。...提供了有关如何连接到MySQL数据库,执行SQL查询,连接列值以及最终使用Python打印结果的分步指南。...您可以通过运行导入 PyMySQL 的 Python 脚本来验证是否已安装 PyMySQL。如果没有错误,则 PyMySQL 已正确安装并可以使用。...结论 总之,我们已经学会了如何使用Python连接MySQL表的列值,这对于任何使用关系数据库的人来说都是一项宝贵的技能。

    24530

    如何通过 Jenkins 进行资源的锁定和释放

    需求分析 对于这样的需求,一般都会首先想到 Docker;其次是从 Artifactory 取 Build 然后通过 CI 工具进行安装;最后从 Source Code 进行构建然后安装。...由于其他原因我们的 Artifactory 暂时还不能使用,最后只能选择用 Source Code 进行构建然后进行安装。这两种方式都需要解决锁定资源以及释放资源的问题。...本文主要介绍如何通过 Jenkins Lockable Resources Plugin 来实现资源的上锁和解锁。 演示 Demo 1....测试锁资源 这里配置的是参数化类型的 Job,可以选择不同平台,不同仓库进行构建 ? 运行第一个 Job ?...Jenkins pipeline 代码 整个 pipeline 最关键的部分就是如何上锁和释放,这里是通过 lock 和 input message 来实现。

    3.4K30

    快速介绍Python数据分析库pandas的基础知识和代码示例

    “软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。” ? 为了能够快速查找和使用功能,使我们在进行机器学习模型时能够达到一定流程化。...通常回根据一个或多个列的值对panda DataFrame进行排序,或者根据panda DataFrame的行索引值或行名称进行排序。 例如,我们希望按学生的名字按升序排序。...通过性别进行分组 group_by = df.groupby(['Sex']) # Returns a groupby object for values from one column group_by.first...类似地,我们可以使用panda中可用的pivot_table()函数创建Python pivot表。该函数与group_by()函数非常相似,但是提供了更多的定制。...总结 我希望这张小抄能成为你的参考指南。当我发现更多有用的Pandas函数时,我将尝试不断地对其进行更新。

    8.1K20

    EasyCVR通过python进行AI识别测试如何实现使用RTSP流进行行人识别?

    我们使用python进行AI识别测试,具体方式是是开启本地电脑的摄像头进行实时的识别,或者直接传入一张图片进行行人检测,在分析代码把数据源传入到识别,看到的是source=’0’,但是这个参数是打开本地电脑的摄像头流...但我们需要对此处进行修改,使用rtsp流,进行AI行人识别,下面需要进行分析代码,找到可以修改的地方,或者摸个参数,来进行RTSP流的修改。...已经找到了视频流在哪里传进去的了,下面就是进行分析里面的代码进行改成rtsp流,把rtsp流写进去,来做到实时分析,实现行人检测的效果。...在进行分析的时候,发现source这个参数只有LoadStreams用到过,而且是直接传进去的。...在遍历中还使用到了opencv打开本地电脑的摄像机流,再开一个线程进行实时行人识别。

    78230

    一行代码将Pandas加速4倍

    虽然 panda 是 Python 中用于数据处理的库,但它并不是真正为了速度而构建的。了解一下新的库 Modin,Modin 是为了分布式 panda 的计算来加速你的数据准备而开发的。...随着时间的推移,各种Python包的流行程度 但是有一个缺点:对于较大的数据集来说,panda“慢”。 默认情况下,panda 使用单个 CPU 内核作为单个进程执行其函数。...有了它,对于任何尺寸的 pandas 数据数据集,Modin 声称能够以 CPU 内核的数量得到近乎线性的加速。 让我们看看它是如何工作的,并通过一些代码示例进行说明。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。

    2.9K10

    使用Pandas_UDF快速改造Pandas代码

    具体执行流程是,Spark将列分成批,并将每个批作为数据的子集进行函数的调用,进而执行panda UDF,最后将结果连接在一起。...下面的示例展示如何创建一个scalar panda UDF,计算两列的乘积: import pandas as pd from pyspark.sql.functions import col, pandas_udf...要使用groupBy().apply(),需要定义以下内容: 定义每个分组的Python计算函数,这里可以使用pandas包或者Python自带方法。...此外,在应用该函数之前,分组中的所有数据都会加载到内存,这可能导致内存不足抛出异常。 下面的例子展示了如何使用groupby().apply() 对分组中的每个值减去分组平均值。...优化Pandas_UDF代码 在上一小节中,我们是通过Spark方法进行特征的处理,然后对处理好的数据应用@pandas_udf装饰器调用自定义函数。

    7.1K20

    一行代码将Pandas加速4倍

    虽然 panda 是 Python 中用于数据处理的库,但它并不是真正为了速度而构建的。了解一下新的库 Modin,Modin 是为了分布式 panda 的计算来加速你的数据准备而开发的。...随着时间的推移,各种Python包的流行程度 但是有一个缺点:对于较大的数据集来说,panda“慢”。 默认情况下,panda 使用单个 CPU 内核作为单个进程执行其函数。...有了它,对于任何尺寸的 pandas 数据数据集,Modin 声称能够以 CPU 内核的数量得到近乎线性的加速。 让我们看看它是如何工作的,并通过一些代码示例进行说明。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。

    2.6K10

    Python小技巧:如何用更少的代码做更多的事情

    3.枚举 枚举是一种用于同时获取可迭代对象中的元素和索引的函数。枚举可以避免使用额外的变量来记录索引,提高了代码的可读性和效率。...map函数是一种用于将一个函数作用于一个可迭代对象中的每个元素,并返回一个新的可迭代对象的函数。...filter函数是一种用于将一个条件函数作用于一个可迭代对象中的每个元素,并返回一个只包含满足条件元素的新的可迭代对象的函数。...比如在测试中,之前我还自己简单写了一个巡检系统,不用定时器,自己用装饰器实现一个定时器,很简单的一两行代码不用依赖,只要有python环境随时可以执行了。当然了,还可以有很多用途。...python以简洁之美著称,所以在实际的开发中,我们还是可以多用到这些高级的语法,可以很简洁的实现功能。

    19410

    #000 Python 入门第一题通过扩展,学到了更多的知识

    本文链接:https://blog.csdn.net/shiliang97/article/details/96310845 #000 Python 入门第一题通过扩展,学到了更多的知识 #1写在前面的话...这个是我想要通过C语言的for循环# 演变成python代码的类型进行实现# 这两门语言还是有所不同的所以我出现了间隔的问题 1 for i in range(1,10): # 第一个实例修改版...%i) 通过对C语言中printf语句内部的%d方式输出十进制整数联想到python是否支持这种写法完成了这种方法# 1 for i in range(1,10): # 第四个实例会换行-...想到了拆开数字和helloworld的语句分开进行输出,本以为可以正常运行结果却出现了错误# 1 for i in range(1,10): # 第四个实例python2.7不会换行Python...3.x 则对这个语法进行了修改。

    60640
    领券