PHP-ORT 还可选集成微软的 ONNX Runtime,以支持高效的机器学习模型执行。 什么是 PHP-ORT? PHP-ORT(Oh Really, Tensors?)...基本使用示例 PHP-ORT 使张量操作变得直观。...(ORT\Math\backend() ?: "标量") . "\n"; echo "核心数: " . ORT\Math\cores() . "\n"; 为什么选择 PHP-ORT?...配置和定制 PHP-ORT 提供灵活的配置选项: 环境变量:设置 ORT_SCALE_CORES 以控制线程池大小(默认为 CPU 核心数)。...--disable-ort-avx2 或 --disable-ort-sse41:回退到较低级的 SIMD 指令。 --enable-ort-neon:适用于 ARMv8 架构。
import onnxruntime as ort all_providers = ort.get_all_providers() print(all_providers) available_providers...= ort.get_available_providers() print(available_providers) 运行结果: ['TensorrtExecutionProvider', 'CUDAExecutionProvider...以下是一个示例: import os import onnxruntime as ort def get_available_providers(): providers =...= True # 可选,开启性能分析 session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL...session = ort.InferenceSession(model_path, sess_options=session_options, providers=providers)
如果不显式指定,ORT 有时候会“犹豫”,这都会消耗时间。...import onnxruntime as ort import numpy as np sess = ort.InferenceSession("model.onnx", providers...开启 ORT_ENABLE_ALL,让 ORT 帮你做算子融合、常量折叠和内存规划。...import onnxruntime as ort so = ort.SessionOptions() so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL...(); so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess = ort.InferenceSession
is for optimizing performance sess_options.intra_op_num_threads = 24 # sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL...sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL ort_session = ort.InferenceSession...numpy() if tensor.requires_grad else tensor.cpu().numpy() # compute ONNX Runtime output prediction ort_inputs...= {ort_session.get_inputs()[0].name: to_numpy(input_x)} ort_outs = ort_session.run(None, ort_inputs)...t1 = ort_outs[0] t2 = ort_outs[1] labels = np.argmax(np.squeeze(t1, 0), axis=0) print(labels.dtype,
::Session初始化Ort::Session对应ORT的python API中 InferenceSession。...Ort::Value的构建Ort::Value是模型输入的类型,也就是ORT C++ API中表示Tensor(张量)的类型。...std::vectorOrt::Value> ort_inputs;ort_inputs.push_back(std::move(input_tensor));ort_inputs.push_back...(), session_options);}### Ort::Env与coredump通过前面的例子,Ort::Env参数应该只是构造Ort::Session时的临时变量,这里为什么要弄成Model类的成员变量呢...mask_tensor_values.size(), shape.data(), 2);std::vectorOrt::Value> ort_inputs;ort_inputs.push_back(std
;Yolov8PoseOnnxtask_pose_ort;cv::Mat src = imread(img_path);cv::Mat img = src.clone();yolov8_onnx(task_pose_ort...::Value> input_tensors;std::vectorOrt::Value> output_tensors;input_tensors.push_back(Ort::Value::CreateTensor...::Value> input_tensors;std::vectorOrt::Value> output_tensors;input_tensors.push_back(Ort::Value::CreateTensor...::Env(OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "Yolov8");Ort::SessionOptions _OrtSessionOptions = Ort...::SessionOptions();Ort::Session* _OrtSession = nullptr;Ort::MemoryInfo _OrtMemoryInfo;#if ORT_API_VERSION
is for optimizing performance sess_options.intra_op_num_threads = 24 # sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL...sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL ort_session = ort.InferenceSession...numpy() if tensor.requires_grad else tensor.cpu().numpy() # compute ONNX Runtime output prediction ort_inputs... = {ort_session.get_inputs()[0].name: to_numpy(input_x)} ort_outs = ort_session.run(None, ort_inputs)...boxes = ort_outs[0] # boxes labels = ort_outs[1] # labels scores = ort_outs[2] # scores print(boxes.shape
::SessionOptions session_options; Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "yolov8-onnx")...GPU Device" << std::endl; OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0); Ort....GetInputNameAllocated(i, allocator); input_node_names.push_back(input_name.get()); Ort...::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); Ort::Value input_tensor_ = Ort::Value...::Value> ort_outputs; try { ort_outputs = session_.Run(Ort::RunOptions{ nullptr }, inputNames.data
1.12.0 代码部分: #include #include using namespace std; using namespace Ort...; int main() { const wchar_t* model_path = L"D:\\yolov8s.onnx";//模型路径 Ort::Env env;//创建env...Ort::Session session(nullptr);//创建一个空会话 Ort::SessionOptions sessionOptions{ nullptr };//创建会话配置...session = Ort::Session(env, model_path, sessionOptions); //获取输入节点数量,名称和shape size_t inputNodeCount...inputNodeNames.push_back(inputName.get()); std::cout << "输入节点名称:" << inputName << "\n"; Ort
Please reference Install ORT. Build from source See Build instructions....Note: starting ORT 1.19, CUDA 12.x becomes default version when distributing ONNX Runtime GPU packages...See Install ORT for detail....() sess = ort.InferenceSession("my_model.onnx", sess_options=sess_options, providers=providers) This...Ort::Session session(*ort_env, ORT_TSTR("matmul_2.onnx"), session_options); Ort::MemoryInfo info_cuda
# ONNX Runtime warmup + pinned buffers import onnxruntime as ort, numpy as np so = ort.SessionOptions...() so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess = ort.InferenceSession...# ONNX Runtime optimizations + EPs so = ort.SessionOptions() so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL..._sess is None: so = ort.SessionOptions() so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL...so = ort.SessionOptions() so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
优化等级 optimize_for_gpu 是否面向GPU优化 fp16 是否转换为半精度,配置后可以减小模型体积 Pipeline 使用 在pipeline中使用,只需要accelerator="ort...from optimum.pipelines import pipeline classifier = pipeline(task="text-classification", accelerator="ort...score': 0.5144545435905457, 'start': 0, 'end': 3, 'answer': '普希金'} 未优化的模型耗时:0.10119819641113281 再使用ORT...tokenizer, device=0) pipeline_qa(QA_input) start = time.time() print(pipeline_qa(QA_input)) print(f"ORT...模型耗时:{time.time() - start}") {'score': 0.5144545435905457, 'start': 0, 'end': 3, 'answer': '普希金'} ORT
#include #include using namespace std; using namespace Ort...multiplies()); }; int main() { const wchar_t* model_path = L"D:\\yolov8s.onnx";//模型路径 Ort...::Env env;//创建env Ort::Session session(nullptr);//创建一个空会话 Ort::SessionOptions sessionOptions{...inputNodeCount= session.GetInputCount(); std::cout << "输入节点数量:" << inputNodeCount << "\n"; Ort...::Value> input_tensors; std::vectorOrt::Value> output_tensors; input_tensors.push_back(Ort::
::Env env(ORT_LOGGING_LEVEL_WARNING, "MNIST"); Ort::SessionOptions session_options; session_options.SetIntraOpNumThreads...(1); session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); // 加载模型...); // 注意:uchar是unsigned char的缩写,表示无符号字符,通常用于存储灰度值 } } // 创建输入张量 auto memory_info = Ort...::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault); Ort::Value input_tensor = Ort::Value...::AllocatorWithDefaultOptions()).get()); // 运行推理 auto output_tensors = session.Run( Ort:
iostream> #include #include int main() { // 初始化ONNX Runtime环境 Ort...::Env env(ORT_LOGGING_LEVEL_WARNING, "ONNXRuntimeGpuTest"); Ort::SessionOptions session_options;...inputNodeCount= session.GetInputCount(); std::cout << "输入节点数量:" << inputNodeCount << "\n"; Ort...inputNodeNames.push_back(inputName.get()); std::cout << "输入节点名称:" << inputName << "\n"; Ort...outputNodeNames.push_back(outputName.get()); std::cout << "输出节点名称:" << outputName << "\n"; Ort
include #include #include using namespace std; using namespace Ort...; int main() { Ort::Env env;//创建env Ort::Session session(nullptr);//创建一个空会话 Ort::SessionOptions...model_bytes((std::istreambuf_iterator(stream)), std::istreambuf_iterator()); session= Ort
对得到的三个输出层分别解析,就可以获取到坐标(boxes里面包含的实际坐标,无需转换),推理部分的代码如下: import onnxruntime as ort import cv2 as cv import...numpy() if tensor.requires_grad else tensor.cpu().numpy() # compute ONNX Runtime output prediction ort_inputs... = {ort_session.get_inputs()[0].name: to_numpy(input_x)} ort_outs = ort_session.run(None, ort_inputs)...# (N,4) dimensional array containing the absolute bounding-box boxes = ort_outs[0] scores = ort_outs...[1] labels = ort_outs[2] print(boxes.shape, boxes.dtype, labels.shape, labels.dtype, scores.shape, scores.dtype
在Python中,要检查ONNX Runtime是否可以使用GPU,可以使用以下代码: import onnxruntime as ort # 检查CUDA是否可用 def is_cuda_available...(): try: return ort.get_device() == 'GPU' except Exception: return False #...检查ONNX Runtime是否支持CUDA def is_onnxruntime_cuda_supported(): return ort.get_device() == 'GPU' #...检查ONNX Runtime是否使用CUDA def is_onnxruntime_using_cuda(): providers = ort.get_available_providers()
需要进行推理的onnx模型文件名称onnx_file_name = "xxxxxx.onnx"# onnxruntime.InferenceSession用于获取一个 ONNX Runtime 推理器ort_session...= {'input': input_img} # 我们更建议使用下面这种方法,因为避免了手动输入key# ort_inputs = {ort_session.get_inputs()[0].name:...input_img}# run是进行模型的推理,第一个参数为输出张量名的列表,一般情况可以设置为None# 第二个参数为构建的输入值的字典# 由于返回的结果被列表嵌套,因此我们需要进行[0]的索引ort_output...= ort_session.run(None,ort_inputs)[0]# output = {ort_session.get_outputs()[0].name}# ort_output = ort_session.run...([output], ort_inputs)[0]