采用建表过程中,直接:stored as orc,就可以指定。 然而用传统文本文件导入的方式,再进行查询测试,如select count(*) from table XX....则会出现:Failed with exception java.io.IOException:java.io.IOException: Malformed ORC file的问题。...找到解决办法,由于TXT文档导入,无法生成ORC数据结构,所以需要先导入临时表,再从临时表中再导到ORC表中。
使用正常的org.apache.orc.mapred.OrcInputFormat读orc文件时每行返回的值是: null {"name":"123","age":"456"} null {...需要开发一个转换器,只返回OrcInputFormat返回的json串的value即可。...; import org.apache.orc.mapred.OrcInputFormat; import org.apache.orc.mapred.OrcMapredRecordReader; import...org.apache.orc.mapred.OrcStruct; import org.apache.orc.Reader; import org.apache.orc.Reader.Options;...对应到orc格式时没找到官方提供的包,只能自己写一个。
ORC文件格式 在Hive 0.11.0版本引入此功能 ORC 是 Optimized Row Columnar 的缩写,ORC 文件格式提供一种高效的方法来存储Hive数据。...当Hive读取,写入和处理数据时,使用 ORC 文件格式可以提高性能。...state string, zip int ) STORED AS orc tblproperties ("orc.compress"="NONE"); 除此之外,还可以为表指定压缩算法: CREATE...tblproperties ("orc.compress"="Zlib"); 通常不需要设置压缩算法,因为Hive会设置默认的压缩算法 hive.exec.orc.default.compress=...我们通常的做法是将 HDFS 中的数据作为文本,在其上创建 Hive 外部表,然后将数据以 ORC 格式存储在Hive中: CREATE TABLE Addresses_ORC STORED AS ORC
总结: 完整用例 #include "llvm/ExecutionEngine/Orc/LLJIT.h" #include "llvm/IR/LegacyPassManager.h" #include...llvm/Transforms/Scalar.h" #include "ExampleModules.h" using namespace llvm; using namespace llvm::orc
ORC实例总结 总结 因为API茫茫多,逻辑上的一些概念需要搞清,编码时会容易很多。 JIT的运行实体使用LLVMOrcCreateLLJIT可以创建出来,逻辑上的JIT实例。...LLVMBasicBlockRef EntryBB = LLVMAppendBasicBlock(SumFunction, "entry"); // - 创建一个IR构建器并将其定位到基本块的末尾。...argc, (const char **)argv, ""); LLVMInitializeCore(LLVMGetGlobalPassRegistry()); // 初始化本地目标代码生成和汇编打印器。...LLVMShutdown(); return MainResult; } ORC完整 //===------ OrcV2CBindingsBasicUsage.c - Basic OrcV2 C Bindings
Apache Hive1.2.1 先看下列式存储的两个代表框架: Apache Parquet比较适合存储嵌套类型的数据,如json,avro,probuf,thrift等 Apache ORC...下面看下具体以orc为例子的场景实战: 需求: 将Hbase的表的数据,加载到Hive中一份,用来离线分析使用。...在hbase中,所以,先建立hive关联hbase的表,然后在建里一个orc的表,用来放数据,sql如下: Sql代码 drop table if exists etldb;...--stored as textfile; tblproperties ("orc.compress"="SNAPPY"); --从临时表,加载数据到orc中 insert into...table etldb select * from etldb_hbase; (4)加载完成后,就可以离线分析这个表了,用上orc+snappy的组合,查询时比直接 hive关联hbase
ORC表压缩 ORC表的压缩,需要通过表属性orc.compress来指定。orc.compress的值可以为NONE、ZLIB、SNAPPY,默认为ZLIB。...首先创建一个非压缩的ORC表: create table compress_orc_none ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED...AS orc tblproperties ("orc.compress"="NONE") as select * from compress_2; ?...然后再创建一个使用SNAPPY压缩的ORC表: create table compress_orc_snappy ROW FORMAT DELIMITED FIELDS TERMINATED BY '\...t' STORED AS orc tblproperties ("orc.compress"="SNAPPY") as select * from compress_2; ?
参考文章:https://prestosql.io/blog/2019/04/23/even-faster-orc.html 最近Presto的官网发表了一篇文章,叙述了新版本的Presto对ORC格式读取的性能优化过程...在 TPC-DS benchmark 测试中,对于 ORC 格式新的读取方式 Presto 总的查询耗费时间减少了约5%,CPU使用量减少了约9%。 What improved?...对于ORC各个数据类型的优化 Why exactly is this faster?.../src/main/java/io/prestosql/orc/stream/BooleanInputStream.java#L218)。...对使用zlib压缩算法的ORC格式进行测试,结果如下。
四、文件压缩 ORC文件使用两级压缩机制,首先将一个数据流使用流式编码器进行编码,然后使用一个可选的压缩器对数据流进行进一步压缩。...编码器一般会将一个数据流压缩成一个个小的压缩单元,在目前的实现中,压缩单元的默认大小是256KB。 五、内存管理 当ORC writer写数据时,会将整个stripe保存在内存中。...由于stripe的默认值一般比较大,当有多个ORC writer同时写数据时,可能会导致内存不足。为了现在这种并发写时的内存消耗,ORC文件中引入了一个内存管理器。...当有新的writer需要写出数据时,会向内存管理器注册其大小(一般也就是stripe的大小),当内存管理器接收到的总注册大小超过阈值时,内存管理器会将stripe的实际大小按该writer注册的内存大小与总注册内存大小的比例进行缩小...当有writer关闭时,内存管理器会将其注册的内存从总注册内存中注销。
一、ORC File文件结构 ORC的全称是(Optimized Row Columnar),ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache...2015年ORC项目被Apache项目基金会提升为Apache顶级项目。ORC具有以下一些优势: ORC是列式存储,有多种文件压缩方式,并且有着很高的压缩比。 文件是可切分(Split)的。...文件压缩 ORC文件使用两级压缩机制,首先将一个数据流使用流式编码器进行编码,然后使用一个可选的压缩器对数据流进行进一步压缩。...编码器一般会将一个数据流压缩成一个个小的压缩单元,在目前的实现中,压缩单元的默认大小是256KB。 二、Hive+ORC建立数据仓库 在建Hive表的时候我们就应该指定文件的存储格式。...三、Java操作ORC 到https://orc.apache.org官网下载orc源码包,然后编译获取orc-core-1.3.0.jar、orc-mapreduce-1.3.0.jar、orc-tools
图片转换文字识别器是一款非常好用的功能非常强的图片转换文字手机工具,在图片转换文字识别器软件上有着非常多的功能,用户可以使用这款软件在我们工作中解决很多的问题和麻烦,是一款办公学习必备神器,感兴趣的朋友赶紧下载图片转换文字识别器开始使用吧...图片转换文字识别器软件介绍 这款软件的使用方式也是超级简单的只要你想打印文字的图片上传就可以了上传之后,他经过简单的识别,只需要短短几秒之内就可以把你想要打印的文字,一字不落的帮你打印到你的文档上。...图片转换文字识别器软件特点 1、这个软件现在都是免费的下载和使用的无限制的使用,没有限制次数和时间。 2、而且这里的文字都是非常容易帮助你来查看的,不像别的软件一样,它识别不了那些模糊的文字。...3、还可以选择行选择列的一排一排帮助你来进行识别哦。 图片转换文字识别器软件优势 1、直接可以用这个软件来进行拍照识别是更加的方便。不用你再使用别的软件进行拍照再导入了。...2、并没有多余的操作,大家可以直接在这个平台上来直接进行的识别,都是大家需要的应用。 3、而且还可以直接裁剪图片的大小和行列,这样也是更加容易你识别的。
CREATE TABLE orc_test( s1 date, s2 string, s3 string ) STORED AS ORC LOCATION '/fayson/orc_test';...ALTER TABLE orc_test ADD COLUMNS (testing string); INSERT overwrite table orc_test SELECT * FROM orc_test...; INSERT into table orc_test SELECT * FROM orc_test; (可左右滑动) ?...string); INSERT overwrite table orc_test SELECT * FROM orc_test; INSERT into table orc_test SELECT...4.ORC文件格式的事务支持尚不完善,具体参考《Hive事务管理避坑指南》,所以在CDH中的Hive中使用ORC格式是不建议的,另外Cloudera Impala也不支持ORC格式,如果你在Hive中创建
1、Hive支持 创建表时指定orc格式即可: create table tmp.orc_test(id bigint, name string, age int) stored as orc TBLPROPERTIES...2、SPARK支持 Spark读: df = spark.read.orc("/tmp/test/orc_data") # 读出来的数据是一个dataframe Spark写: df.write.format...("orc").save("/tmp/test/orc_data2") 3、Hadoop Streaming支持 3.1、读orc文件,输出text hadoop jar /usr/local/hadoop.../orc_streaming_test \ -output /tmp/test/orc_streaming_test2 \ -inputformat org.apache.orc.mapred.OrcInputFormat...\ -outputformat org.apache.orc.mapred.OrcOutputFormat \ -mapper is.orc.MyMapper -reducer is.orc.MyReducer
Parquet最初是由Twitter和Cloudera合作开发完成并开源,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。...ORC文件格式 ORC文件格式是一种Hadoop生态圈中的列式存储格式,它的产生早在2013年初,最初产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度。...文件结构 和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。...ORC的文件结构入图6,其中涉及到如下的概念: ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到...由于ORC中使用了更加精确的索引信息,使得在读取数据时可以指定从任意一行开始读取,更细粒度的统计信息使得读取ORC文件跳过整个row group,ORC默认会对任何一块数据和索引信息使用ZLIB压缩,因此
ORC和Parquet格式将有关列和行组的信息编码到文件本身中,因此,在对文件中的数据进行解压缩、反序列化和读取之前,需要处理元数据。...IBM Db2 Big SQL的“文件检查工具”有助于识别HDFS中有问题的小文件,并提供文件压缩建议。...ORC和Parquet提供了它们自己的不同工具来进行文件合并或压缩: ORC使用HIVE DDL Parquet使用工具执行合并命令 ORC文件合并 使用Hive DDL(Hive Data Definition...性能改进 内部测试表明,压缩ORC和Parquet小文件有助于显著提高Big SQL的读取性能。...格式的非压缩表运行查询比在压缩表上运行查询多2倍的时间 在parquet格式的非压缩表运行查询比在压缩表上运行查询多1.6倍的时间 这是针对ORC文件格式的压缩测试的输出,其中SLS_SALES_FACT_ORC
Parquet与ORC:高性能列式存储 列存 、 行存 数据格式层概述 计算层:各种计算引擎 存储层:承载数据的持久化存储 数据格式层:定义了存储层文件内部的组织格式,计算引擎通过格式层的支持来读写文件...spark.sql.parquet.ebableVectorizeReader 向量化读是主流大数据分析引擎的标准实践,可以极大的提高查询性能 spark以batch的方式从parquet读取数据,下推的逻辑也会适配batch的方式 ORC...详解 ORC 是大数据分析领域使用最广的列存格式之一,出自于hive项目 数据模型 ORC会给包括根节点在内的中间节点都创建一个column 嵌套类型或者集合类型支持和parquet差别较大 optional...支持Hive Transactions实现,目前只有hive本身集成 类似delta lake/hudi/iceberg 基于Base+Delta+Compaction的设计 parquet 对比 ORC...从原理层面,最大的差别就是对于nestedType和复杂类型的处理上 parquet的算法上要复杂很多,带来的cpu的开销比orc略大 orc的算法相对简单,但是要读取更多数据 因此,这个差异对业务效果的影响
一、实验目的和要求 目的: 了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。 要求: 1. 产生两类样本 2. 采用线性分类器生成出两类样本的分类面 3....三、实验基本原理 感知器基本原理: 1.感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。感知器的基本模型结构如图1所示: ?...(4) 通过(4)来不断更新w,这种算法就称为感知器算法(perceptron algorithm)。...四、实验过程描述 总结: 采用感知器算法实现data1.m的数据分类流程如图2所示: ? 图2 单层感知器算法程序流程 Fisher准则求得分类面的性能好坏一定程度上受样本影响。...五、实验结果 感知器分类结果: ? Fisher线性分类器分类结果: ?
(源码在第三篇) 上一篇简单整理了下人脸识别的相关基础知识,这一篇将着重介绍利用pencv(2.4.9)已有的模型进行分类器训练。...其中有人脸识别接下来会用到的几个函数(train、load、save、predict)。 ?...同时opencv自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。直接调用这三种算法很简单,一般都是三句话足够: ?...数据量较大的情况 小测试中共涉及了15张图片,即使让你人为命名写路径也不算很麻烦,可是人脸识别需要的数据往往很大,这就不可能说人为的去一张张图片的处理了。...之后便是一些处理,将摄像头采集到的图像检测出人脸,再将人脸处理成指定格式,调用predict函数进行识别,和库内数据比较即可。 具体全面的程序和项目代码将在下一篇给出!
上一篇简单整理了下人脸识别的相关基础知识,这一篇将着重介绍利用pencv(2.4.9)已有的模型进行分类器训练。...其中有人脸识别接下来会用到的几个函数(train、load、save、predict)。 ?...同时opencv自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。直接调用这三种算法很简单,一般都是三句话足够: ?...数据量较大的情况 小测试中共涉及了15张图片,即使让你人为命名写路径也不算很麻烦,可是人脸识别需要的数据往往很大,这就不可能说人为的去一张张图片的处理了。...之后便是一些处理,将摄像头采集到的图像检测出人脸,再将人脸处理成指定格式,调用predict函数进行识别,和库内数据比较即可。 具体全面的程序和项目代码将在下一篇给出!
写入orc工厂类 首先我们要引入相应的pom org.apache.flink flink-orc_2.11...如果用户在写入orc文件之后,想添加一些自己的元数据信息,可以覆盖org.apache.flink.orc.vector.Vectorizer#addUserMetadata方法来添加相应的信息。...写入的配置来自https://orc.apache.org/docs/hive-config.html,具体可以是以下的值. key 缺省值 注释 orc.compress ZLIB high level...compression = {NONE, ZLIB, SNAPPY} orc.compress.size 262,144 compression chunk size orc.stripe.size...orc.bloom.filter.columns ”” comma separated list of column names orc.bloom.filter.fpp 0.05 bloom filter
领取专属 10元无门槛券
手把手带您无忧上云