首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

optaplanner与固定实体的冲突

OptaPlanner是一个开源的约束求解引擎,用于解决排班、路径规划、资源分配等优化问题。它基于规则引擎和启发式算法,能够自动找到最优或接近最优的解决方案。

固定实体的冲突是指在OptaPlanner中,某些实体被标记为固定,不允许移动或改变其状态,但与其他实体之间存在冲突。这种冲突可能会导致无法找到满足所有约束条件的解决方案。

为了解决固定实体的冲突,可以采取以下几种方法:

  1. 调整约束条件:通过调整约束条件,使得固定实体与其他实体之间的冲突得到解决。这可能需要重新定义约束条件或修改其权重,以便在求解过程中优先考虑固定实体的约束。
  2. 调整优化算法:选择合适的启发式算法或搜索策略,以便在求解过程中更好地处理固定实体的冲突。例如,可以尝试使用更灵活的邻域搜索算法,或者调整算法的参数以提高求解效果。
  3. 考虑部分固定实体:如果固定实体之间存在冲突,可以考虑将其中一些实体标记为可变,以便在求解过程中进行调整。这样可以增加问题的灵活性,但也可能导致解空间的增加和求解时间的增加。
  4. 使用其他约束求解工具:如果OptaPlanner无法满足固定实体冲突的需求,可以考虑使用其他约束求解工具或自定义算法来解决问题。这些工具可能具有更强大的求解能力或更适合特定类型的问题。

腾讯云相关产品中,与OptaPlanner类似的优化求解引擎是腾讯云智能调度(Intelligent Scheduling),它提供了一套灵活的调度算法和规则引擎,可用于解决排班、路径规划、资源分配等优化问题。您可以通过腾讯云智能调度产品介绍页面(https://cloud.tencent.com/product/ids)了解更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

OptaPlanner规划引擎的工作原理及简单示例(2)

在前面一篇关于规划引擎OptaPlanner的文章里(OptaPlanner规划引擎的工作原理及简单示例(1)),老农介绍了应用OptaPlanner过程中需要掌握的一些基本概念,这些概念有助于后面的内容的理解,特别是关于将约束应用于业务规则上的理解。承上一文,在本篇中将会减少一些理论,而是偏向于实践,但过程中,借助实际的场景对一些相关的理论作一些更细致的说明,也是必要的。本文将会假设我们需要对一个车间,需要制定生产计划.我们为生产计划员们设计一套智能的、自动的计划系统;并通过OptaPlanner把这个自动计划系统开发出来。当然,里面的业务都是经过高度抽象形成的,去除了复杂的业务规则,仅保留可以体现规划引擎作用的一些业务需求。因此,这次我们只用一个简单的小程序即可以演绎一个自动计划系统,来呈现规划引擎OptaPlanner在自动计划上的魅力。

01
  • 设计Optaplanner下实时规划服务的失败经历

    其实本文不知道算不算一个知识点分享,过程很美妙,但结果很失败。我们在利用OptaPlanner的Real-Time planning(实时规则)功能,设计实时在线规划服务时,遇到一个属于OptaPlanner7.8.0.Final版本的Bug。在实现实时在线规划服务的过程中,我做过很多尝试。因为需要实时在线的服务,因此,需要设计多线程并发为外界请求提供响应,需要实现消息队列来管理并发请求的时序等问题。这些Java方面的并发处理,我们暂时不详述,这方面的牛的人太多了,我只是新手,站在别人的肩膀上实现的代码而已。在本文我着重介绍一下,我在尝试使用OptaPlanner的Real-Time Planning功能时遇到的问题,最终确认问题出自OptaPlanner引擎自身, 并通过JIRA向OptaPlanner 团队提交issue过程。 关于OptaPlanner的Real-time planning   先看看正常情况下,我们对OptaPlanner的应用场景。平时我们使用OptaPlanner时,不外乎以下几个, 构建Problem对象 + 构建Solver对象-> 启动引擎 -> 执行规划 -> 结束规划 -> 获得方案-> 获取结果方案,如下图。   这种应用模式下,引擎处于一个非实时状态,只是一个调用 -> 获取规划结果的简单交互过程。

    00

    OptaPlanner规划引擎的工作原理及简单示例(1)

    在之前的文章中,已介绍过APS及规划的相关内容,并对Optaplanner相关的概念和一些使用示例进行过介绍,接下来的文章中,我会自己做一个规划小程序 - 一个关于把任务分配到不同的机台上进行作业的小程序,并在这个小程序的基础上对OptaPlanner中更多的概念,功能,及使用方法进行讲解。但在此之前,我需要先讲解一下OptaPlanner在进行规则运算的原理。所以,本文是讲述一些关于寻找最优解的过程中的原理性的内容,作为后续通过示例深入讲解的基础。但这些原理知识不会涉及过分深奥的数学算法,毕竟我们的目标不是写一个新的规划引擎出来,更不是要研究各种寻优算法;只是理解一些概念,用于理解OptaPlanner是依据什么找出一个相对优解的。以便在接下来的一系列文章中,可以快速无障碍地理解我所讲解的更细化的OptaPlanner功能。

    00

    【译】OptaPlanner开发手册本地化: (0) - 前言及概念

    在此之前,针对APS写了一些理论性的文章;而对于OptaPlanner也写了一些介绍性质,几少量入门级的帮助初学者走近OptaPlanner。在此以后,老农将会按照OptaPlanner官方的用户手册的结构,按章节地对其进行翻译,并成型一系列的操作说明文章。在文章中,为了降低对原文的理解难度,有些地方我不会直接按原文档的字面翻译,而是有可能加入一些我自己的理解,或添一些解释性的内容。毕竟英语环境下的思维和语言表达方式,跟中文或多或少会有差别的,所以如果全部按字面翻译,内容就非常生硬,可读性差,解程难度较大。我认为应该在理解了作者原意的基础上,再进一步以中文方式的表达,才算是真的的本地化。记得老农还是少农时,学习开发技术,需要阅读一些外国书箱的翻译本时,印象最深的是候捷老师的书,尽管《深入浅出MFC》,砖头厚度的书,硬是被我翻散了线,MFC尽管真的晦涩难懂,但候老却能把Windows的消息机制及MFC中整个个宏体系,系统地通俗地描述出来,令读者不需要花费太多精力去理解猜测书中字面的意义,大大降低的VC++中MFC的学习门槛。但老农毕竟只是一个一线开发人员,不是专业的技术资料翻译人才,不可能有候老师的专业水平,因此,我也只可尽我所能把内容尽量描述得通俗一些,让读者尽量容易理解,花费更少的时间掌握这些知道要点。

    00

    OptaPlanner终于支持多线程并行运行 - Multithreaded solving

    OptaPlanner 7.9.0.Final之前,启动引擎开始对一个Problem进行规划的时候,只能单线程进行的。也就是说,当引擎对每一个possible solution进行分数计算的过程中,细化到每个步骤(Caculation),都只能排队在同一个线程中依次计算,不管你的问题是否存在并行计算的可能。很显然这种运算方式应用于一些可并行计划的场景下,是相当不利的。就算是一些在业务逻辑上无法实现并行运算的情况,在引擎自行调用指定的算法进行寻优时,若可以将每个Step,甚至每个Move的运行操作,适当地分配到不同的线程中执行,那么在多核CPU的环境下,无疑能大大提升规划运算性能,从而在规定的时间内行到更优的效果。毕竟对于NP-Hard/NP-Complete问题,除了比较算法优劣外,另一个维度对比的就是运算量,单位时间内运算量越大,找到更佳方案的机率越大。

    03

    关于APS在企业生产计划上的应用

    本人是名软件开发人员,从事软件开发工作10多年。近几年慢慢沉淀到制造业信息化方面,主要是APS在生产计划方面的应用,APS - Advance Planning and Scheduling, 高级计划与排程技术。其实就是计划的一种优化手段,其中使用了一些优化算法,令计划的质量更高一些。通过该技术生成的计划,在达到一些硬性约束的基础上,能实现更进一步的优化。例如满足生产工艺的同时,提高订单的按时交付率,降低成本等。从最开始被调去做ERP数据适配APS项目实施,到现在自己在为公司设计、开发排产程序(通过第三方规划引擎用、求解器实现)。从中也接触过不少排程产品,针对不同的场景,其适应性、可用性千差万别。长期制造企业生产领域的工作经历,令我有更多机会面对各种供应链、排产等方面的问题。本人细说一下APS技术在制造业的生产计划上的应用。

    03

    浅尝一个排程引擎Optaplanner - 前序

    当码农有10多年了,由建筑行业软件,各种MIS,通用物流定制平台,CCTV客户端(是闭路电视,不是央视喔)啥都做过。最后小试一下创业,不过那都是闹着玩的,不到一年就回到码农的队列,重拾搬砖的行当。近些年一直在制造业,做过ERP,当过小组负责人。有人问为什么不转纯管理?是能力不足,气质不佳还是人品低下?我觉得都有些且不全吧。反正无论是当管理还是做技术,我还是觉得手里拿点实在的东西心里才踏实。并不是说管理不是一个好技能,而是本人遇机问题,机会不多,所以大多数时间都是在做搬砖,砖搬多了,当然想试一下,看能不能搞个自动化机械出来,总不能搬到退休那天吧,码农到底多少岁退休呀?看来如果再不练就点拿得出手来的东西,到时候我就只能退,无法休了。那些奋斗于500强,30岁而立之年已赚足退休资本的农场主们不在此列。

    00

    【翻译】DoesWilliam Shakespeare REALLY Write Hamlet? Knowledge Representation Learning with Confidence

    知识图谱能够提供重要的关系信息,在各种任务中得到了广泛的应用。然而,在KGs中可能存在大量的噪声和冲突,特别是在人工监督较少的自动构造的KGs中。为了解决这一问题,我们提出了一个新的置信度感知(confidence-aware)知识表示学习框架(CKRL),该框架在识别KGs中可能存在的噪声的同时进行有置信度的知识表示学习。具体地说,我们在传统的基于翻译的知识表示学习方法中引入了三元组置信度。为了使三次置信度更加灵活和通用,我们只利用KGs中的内部结构信息,提出了同时考虑局部三次和全局路径信息的三次置信度。在知识图噪声检测、知识图补全和三重分类等方面对模型进行了评价。实验结果表明,我们的置信度感知模型在所有任务上都取得了显著和一致的改进,这证实了我们的CKRL模型在噪声检测和知识表示学习方面的能力。

    01
    领券