1.数据转换工具OpenRefine介绍 2.数据转换工具OpenRefine安装 3.数据转换工具OpenRefine基本使用 4.数据转换工具OpenRefine进阶使用
OpenRefine是一款免费开源、清理数据的强大工具,它可以帮助用户在使用数据之前完成清理工作,并通过浏览器运行的界面直观地展现对数据的相关操作,对于编程能力薄弱的用户而言是一个不错选择。
导读:本文将使用OpenRefine清理我们的数据集;它很擅长数据的读取、清理以及转换数据。
本文介绍了一种用于数据可视化的交互式工具,该工具可以生成各种图形和图表,包括热力图、树图、网络图、饼图等等。该工具基于Go语言和Echarts库开发,支持多种数据源,包括数据库、Excel、CSV、JSON等,可以快速生成交互式图表,并支持自定义图表样式、颜色、字体等。该工具还支持云端部署和分享,可以在浏览器中直接运行,无需安装任何插件。本文主要介绍了该工具的功能和特点,以及使用方法和技术实现。
内容包括:有趣、入门级的开源项目、开源书籍、实战项目、企业级项目等,让你在短时间内感受到开源的魅力,对开源和编程产生兴趣!
导读:数据已经成为现代化企业中最为重要的宝贵资源。考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面我们将整理出一份包含十款工具的清单,从而有效压缩选择范畴。 ▶1. OpenRefine 这是一款高人气数据分析工具,适用于各类与分析相关的任务。这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。在聚类完成后,分析即可开始。 ▶2. Had
本文探讨了开源技术在大数据处理和分析领域的重要性,分析了开源工具在处理大数据、构建分析流程和实现数据可视化方面的作用。通过深入研究不同的开源解决方案,我们将了解开源如何在大数据和分析中发挥关键作用。
Python由于其易用性而成为最流行的语言,它提供了许多库,使程序员能够开发更强大的软件,以并行运行模型和数据转换。
考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。 数据已经成为现代化企业
考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面我们将整理出一份包含十款工具的清单,从而有效压缩选择范畴。 数据已经成为现代化企业中最为重要的宝贵资源。一切决策、策略或者方法都需要依托于对数据的分析方可实现。随着“大数据分析”逐步替代其上代版本,即“商务智能”,企业正面临着一个更加复杂、且商业情报规模更为庞大的新时代。 考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适
数据已经成为现代化企业中最为重要的宝贵资源。一切决策、策略或者方法都需要依托于对数据的分析方可实现。随着“大数据分析”逐步替代其上代版本,即“商务智能”,企业正面临着一个更加复杂、且商业情报规模更为庞
近日北卡来罗纳大学CTO,一位数据科学家Jefferson Heard分享了多年来收集沉淀的数据分析工具集:
作为一位万人敬仰的数据科学家,不但需要培育一棵参天技能树,私人武器库里没有一票玩得转的大火力工具也是没法在江湖中呼风唤雨的。 近日北卡来罗纳大学CTO,一位数据科学家Jefferson Heard分享了多年来收集沉淀的数据分析工具集: 1 处理较大、较复杂的类excel数据 Pandas -处理tabular(类似Excel)数据的通用工具套件 SQLite – Tabular数据库格式,能够处理大规模数据集,同时也能在桌面环境运行。 PostgreSQL – 企业级数据库系统 2 处理空间、地理数据 Po
Tick数据是市场微观结构分析中最有用的数据。可是,Tick数据也是最容易受数据损坏影响,因此在用于任何形式的分析之前必须要进行清洗和调整。
从今天开始我准备写一个系列的博客,题目取为《最流行的14款数据可视化库/工具》。下面的可视化库主要是用来作图展示。一图胜千言,让我们用图说话? 计划 总共是14个库,我的计划是花费半年写完,也就是6个
Galaxy Project(https://galaxyproject.org/)是在云计算背景下诞生的一个生物信息学可视化分析开源项目。
下面是一些机构的定义: 维基百科: 传统数据处理应用软件不足以处理的大型而复杂的数据集; 包含的数据大小超过了传统软件在可接受时间内处理的能力。 互联网数据中心(IDC): 为了能够更经济地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术。
导读:数据工作者经常会遇到各种状况,比如你收集到的数据并不像你期待的那样完整、干净。此前我们讲解了用OpenRefine搞定数据清洗,本文进一步探讨用pandas和NumPy插补缺失数据并将数据规范化、标准化。
数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。但从狭义上来看,我认为数据科学就是解决三个问题: 1. data pre-processing;(数据预处理) 2. data interpretation;(数据解读) 3.data modeling and analysis.(数据建模与分析) 这也就是我们做数据工作的三个大步骤: 1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据; 2、我们想看
工欲善其事,必先利其器,本文对55个流行的数据可视化工具开源协议,主页,文档,案例等资源的进行简单介绍,其中包括著名的D3.js,R,Gephi,Raphaël,Processing.js,Table
虽然题主问的是大数据的入门,但在我看来“大数据”就是数据科学的一个高阶状态。以下内容中除个别情况,我基本上都会使用“数据科学”这个概念。数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。但从狭义上来看,我认为数据科学就是解决三个问题:
文 | 郭小贤 数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。 但从狭义上来看,我认为数据科学就是解决三个问题: 1. data pre-processing;(数据预处理) 2. data interpretation;(数据解读) 3.data modeling and analysis.(数据建模与分析) 这也就是我们做数据工作的三个大步骤: 1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的
本文是数据科学家学习路径的的完结篇,算上《数据科学家成长指南(上)》和《数据科学家成长指南 (中)》,总篇幅应该五万字多一点。今天更新数据获取、数据清洗、工具三条线路的内容,文字较少。
数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。但从狭义上来看,我认为数据科学就是解决三个问题: 1. data pre-processing; 2. data interpretation; 3.data modeling and analysis. 这也就是我们做数据工作的三个大步骤: 1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据; 2、我们想看看数据“长什么样”,有什么特点和规律; 3
国外的攻城师,总结的有关Java的资料,各位美女,帅哥们,可以利用周末,慢慢的品味了。 构建 这里搜集了用来构建应用程序的工具。 Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建。Maven优于Apache Ant。后者采用了一种过程化的方式进行配置,所以维护起来相当困难。 Gradle:Gradle采用增量构建。Gradle通过Groovy编程而不是传统的XML声明进行配置。Gradle可以很好地配合Maven进行依赖管理,并且把Ant脚本当作头等公民。
构建 这里搜集了用来构建应用程序的工具。 Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建。Maven优于Apache Ant。后者采用了一种过程化的方式进行配置,所以维护起来相当困难。 Gradle:Gradle采用增量构建。Gradle通过Groovy编程而不是传统的XML声明进行配置。Gradle可以很好地配合Maven进行依赖管理,并且把Ant脚本当作头等公民。 字节码操作 编程操作Java字节码的函数库。 ASM:通用底层字节码操作及分析。 Ja
如果大家觉得有用,就mark一下,赞一下,或评论一下,让更多的人知道。thanks.
什么是数据采集? 从互联网、传感器和信息系统等来源获取所需要数据的过程。 它是大数据分析流程的第一步。 下图为数据采集在各行业的应用:
此系列主要为我的学弟学妹们所创作,在某些方面可能偏基础。如果读者感觉较为简单,还望见谅!如果文中出现错误,欢迎指正~
♥各位如果想要交流的话,可以加下QQ交流群:974178910,里面有各种你想要的学习资料。♥
导读:本文要介绍的这些技法,会用Python读入各种格式的数据,并存入关系数据库或NoSQL数据库。
Java 资源列表,内容包括:构建工具、数据库、框架、模板、安全、代码分析、日志、第三方库、书籍、Java 站点等等。 古董级工具 这些工具伴随着Java一起出现,在各自辉煌之后还在一直使用。 Apache Ant:基于XML的构建管理工具。官网 cglib:字节码生成库。官网 GlassFish:应用服务器,由Oracle赞助支持的Java EE参考实现。官网 Hudson:持续集成服务器,目前仍在活跃开发。官网 JavaServer Faces:Mojarra是JSF标准的一个开源实现,由Oracle开
GitHub项目地址:https://github.com/jobbole/awesome-java-cn
A curated list of awesome Java frameworks, libraries and software.
领取专属 10元无门槛券
手把手带您无忧上云