【导读】本文是Stephanie Kim的一篇博文你,作者探讨的是一个老生常谈的话题“人脸识别”,介绍针对人脸识别任务的一个特定的开源库——OpenFace。作者之所以专门介绍该开源库,说明该库必然是
人脸识别流程包括人脸检测、人脸对齐、人脸识别等子任务,这里优先总结功能相对齐全的开源项目,再总结完成单个子任务的开源项目。本文主要关注方法较流行且提供源码的开源项目,忽略了仅提供SDK的。
版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/chaipp0607/article/details/78885720
这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如下图所示:
我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。 它的结构如下图所示: 1 Input Imag
前面给大家分别汇总了OpenCV中支持的图像分类与对象检测模型,视觉视觉任务除了分类与检测还有很多其他任务,这里我们就来OpenCV中支持的非分类与检测的视觉模型汇总一下。注意一点,汇总支持的模型都是OpenCV4.4 Github上已经提供的,事实上除了官方的提供的模型,读者还可以自己探索更多非官方模型支持。这里的汇总模型主要来自OpenCV社区官方测试过的。
OpenCV4.0深度神经网络模块,支持openface模型的导入,提取人脸的128特征向量,进行相似度比对,实现人脸识别。Openface模型的详细信息看这里
1 Neural Style Star:12122 Github:https://github.com/jcjohnson/neural-style 这个项目是对论文“A Neural Algorit
人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商场安保方面,人脸识别被广泛应用于监控系统,有助于识别和跟踪潜在的犯罪嫌疑人或失踪人员,提升了安全防范的能力。另外,手机解锁也是人脸识别技术的重要应用之一,它为用户提供了一种快捷、便利的身份验证方式,替代了传统的密码或指纹识别。
以OpenFace算法中实现人脸识别的流程举例,这个流程可以看做是使用深度卷积网络处理人脸问题的一个基本框架,结构如下图所示
上一篇文章--[GAN学习系列3]采用深度学习和 TensorFlow 实现图片修复(上)中,我们先介绍了对于图像修复的背景,需要利用什么信息来对缺失的区域进行修复,以及将图像当做概率分布采样的样本来看待,通过这个思路来开始进行图像的修复。
Git: http://cmusatyalab.github.io/openface/ FaceNet’s innovation comes from four distinct factors: (a) thetriplet loss, (b) their triplet selection procedure, (c) training with 100 million to 200 million labeled images, and (d) (not discussed here) large
昨天调试了人脸识别(classifier_webcam)这个程序,效果不错,响应速度也挺快。按照http://blog.csdn.net/u011531010/article/details/52270023博客内容进行调试即可。 今天调试了python写的landmark,用的是dlib库里的68点文件,其中dat文件为训练好的68点标注,我们加入了视频的实时检测的功能,仿照classifier_webcam这个文件(openface中的)使用VideoCapture(0)这个
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
Openface人脸识别的原理与过程: https://zhuanlan.zhihu.com/p/24567586 原理可参考如下论文: 《OpenFace: A general-purpose face recognition library with mobile applications》 第一步:找出所有的面孔 我们流水线的第一步是人脸检测。 我们的目标是找出并比较当前像素与直接围绕它的像素的深度。然后我们要画一个箭头来代表图像变暗的方向: 用梯度来代替像素这事看起来没有明确目的,但其实背后的理由
选自arXiv 作者:Mahmood Sharif等 机器之心编译 参与:Panda 生成对抗网络(GAN)已经是人工智能领域内的一个常用词了,但你听说过对抗生成网络(AGN)吗?近日,卡内基梅隆大学和北卡罗来纳大学教堂山分校的研究者在 arXiv 上发布的一篇论文提出了这种网络,可实现对当前最佳的人脸识别模型的神经网络攻击。 深度神经网络(DNN)已经在人脸验证(即确定两张人脸图像是否属于同一个人)方面超越了人类的水平。不幸的是,研究还表明使用对抗样本(adversarial example)就可以轻易
大数据文摘作品,转载要求见文末 作者 | Brandon Amos 编译 | Molly,寒小阳 目录 ■ 简介 ■ 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎样着手统计呢?这些都是图像啊。 那么我们怎样补全图像? ■ 第二步:快速生成假图像 在未知概率分布情况下,学习生成新样本 [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构 使用G(z)生成伪图像 [ML-Heavy] 训
作者|Brandon Amos 译者|@MOLLY && 寒小阳 简介 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎样着手统计呢?这些都是图像啊。 那么我们怎样补全图像? 第二步:快速生成假图像 在未知概率分布情况下,学习生成新样本 [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构 使用G(z)生成伪图像 [ML-Heavy] 训练DCGAN 现有的GAN和DCGAN实现 [ML-Heavy] 在Tens
Deepface是一个轻量级的python人脸识别和人脸属性分析(年龄、性别、情感和种族)框架。它是一种混合人脸识别框架缠绕状态的最先进的模型:VGG-Face,Google FaceNet,OpenFace,Facebook DeepFace,DeepID,ArcFace和Dlib。那些模型已经达到并通过了人类水平的准确性。该库主要基于 TensorFlow 和 Keras。
是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现。
论文标题:UR-FUNNY: A Multimodal Language Dataset forUnderstanding Humor
在数字化时代,面部识别技术的突破性进展正在重塑我们与设备和数字世界的互动方式。由于其准确性、便捷性和高效性,这项技术已成为安全、营销和社交媒体领域中不可或缺的一环。今天,我们深入探讨 DeepFace:一个强大的面部识别和分析框架,它应用了最先进的人工智能算法来识别、分析和验证人脸。
DeepFake假视频的泛滥早已经不只是恶搞和娱乐的问题了!这些假视频衍生出的假新闻可能会成为2020美国大选的一场噩梦。
用机器学习合成人像照片,使照片中的人看起来更年轻或年老的方法已经屡见不鲜。不过据雷锋网消息,近日,来自法国Orange实验室的Enter Grigory Antipov和他的朋友们研发出一种更省时、合成结果更准确的方法 。 据雷锋网小编了解,该方法的工作原理是: 让两个深度学习机器同时工作。两个机器一个用来生成人脸,一个用来鉴别人脸。 而且两个机器会通过分析人脸图像,提前习得各年龄段人脸大概是什么样子的。 年龄段分类标准为:0-18, 19- 29, 30-39, 40-49, 50-59, 以及60岁
收集整理了大量的PyTorch相关教程,从博客教程,视频教程到出版书籍,开源书籍甚至PyTorch相关论文,应有尽有,号称史上最全的PyTorch学习资源汇总,大家一起来看看吧。
(1)PyTorch英文版官方手册:https://pytorch.org/tutorials/。对于英文比较好的同学,非常推荐该PyTorch官方文档,一步步带你从入门到精通。该文档详细的介绍了从基础知识到如何使用PyTorch构建深层神经网络,以及PyTorch语法和一些高质量的案例。
本页面收集了大量深度学习项目图像处理领域的代码链接。包括图像识别,图像生成,看图说话等等方向的代码,以便大家查阅使用。 图像生成 绘画风格到图片的转换:Neural Style https://lin
【新智元导读】新智元不久前盘点了2016年 Top50 的深度学习库,本文则根据 GitHub里星标(Star)数多少,整理了排名前16的深度学习应用项目,从风格迁移到生成图说、玩FlappyBird游戏、分辨视频里的不宜内容等,供你参考实践。这份榜单还会持续更新哦~ Neural Style Star:12122 Github 地址:https://github.com/jcjohnson/neural-style 这个项目是用 Torch 对 Leon A. Gatys, Alexander S. Ec
本文介绍了如何使用TensorFlow完成一个简单的“恶作剧”项目。通过使用TensorFlow,可以完成一个基于CNN的图像分类模型,该模型能够识别图像中的面部表情。然后,使用TensorFlow构建一个简单的网页应用程序,该应用程序使用该模型来预测用户输入的图像中包含哪种表情。这个应用程序可以用于娱乐目的,例如让朋友猜测图像中的表情。
Protecting World Leaders Against Deep Fakes(CVPR 2020) paper PDF
伪造人像视频生成技术给社会带来了新的威胁,例如利用逼真的伪造图像和视频进行政治宣传、名人模仿、伪造证据以及其他与身份有关的操作。伴随着这些生成技术的发展,出现了一些被证实有效的 deepfake 检测方法,这些方法具备较高的分类准确率。然而,目前几乎没有任何工作关注 deepfake 视频的来源(即生成 deepfake 视频的模型)。
在计算机视觉领域,特征是为了完成某一特定任务需要的相关信息。比如,人脸检测中,我们需要在图像中提取特征来判断哪些区域是人脸、哪些区域不是人脸,人脸验证中,我们需要在两个人脸区域分别提取特征,来判断他们是不是同一个人,如下图所示,深度神经网络最终得到一个128维的特征用于识别等任务,图片来自Openface
雷锋网按:本文作者Albert Haque, Michelle Guo, Adam S Miner和Li Fei-Fei。文章主要介绍了李飞飞团队的最新研究成果:一种基于机器学习的抑郁症症状严重程度测量方法,该方法使用了视频、音频和文本数据集,以及因果卷积神经网络模型,准确率超过80%。
AI 科技评论按:你可能在一些手机软件上已经看到了给人脸增加特效的app,它们将一些可爱有趣的物体添加到自拍视频中,有些更有趣的还能检测表情自动选择相应的物体。这篇文章将会科普一种使用深度学习进行人脸
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
【新智元导读】GitHub上根据星级(stra)列出了最常用的53个深度学习项目。其中,最受欢迎的是TensorFlow。表格的整理人ID分别是aymericdamien、lenck、pjreddie、vmarkovtsev和JohnAllen。这样一份实用工具表,赶紧收藏吧~ 项目名称星数简介TensorFlow29622使用数据流图计算可扩展机器学习问题。Caffe11799一个高效的开源深度学习框架。Neural Style10148由Torch实现的神经网络算法。Deep Dream9042一款图像
当首次介绍深度学习时,我们认为它是一个要比机器学习更好的分类器。或者,我们亦理解成大脑神经计算。 第一种理解大大低估了深度学习构建应用的种类,而后者又高估了它的能力,因而忽略了那些不是一般人工智能应用的更现实和务实的应用。 最好最自然的理解应该是从人机交互角度来看待深度学习应用。深度学习系统似乎具备近似于生物大脑的能力,因此,它们可以非常高效地应用于增强人类或者动物已经可以执行的任务上。此外,需要重视的一点是,深度学习系统与传统的符号计算平台非常不同,正如人类与计算机的计算方式不同一样,深度学习也是如此
也许你想知道如何在实时视频聊天或者检测情绪的时候把有趣的东西放在脸上?我们可以利用深度学习以及一种较老的方法实现它。 过去,检测人脸及其特征(如眼睛、鼻子、嘴,甚至从它们的形态中获知情感)一项是极具挑
https://github.com/bharathgs/Awesome-pytorch-list
最近,我用一个以 Go 语言为后端的软件,实现了一个人脸识别项目。它能够识别出上传照片中的人像 (如流行歌手)是谁。这听起来不错,我决定试一下也给你们介绍一下项目的整个过程。
做人脸识别用 Python 比较多,但是今天碰上一个另类,他就跟别人不一样,就不用 Python 用 Go。其实不管是 P 还是 G,能认出脸来就是好样的。
本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的
1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的自动分 化(auto-differentiation)。通过灵活的 Python 接口,要在 TensorFlow
目前主流的六种生物识别技术:指纹识别、人脸识别、掌纹识别、虹膜识别、声纹识别和静脉识别。还有更多的生物识别技术如耳膜、步态、笔迹、击键动态等等正在被研究和应用落地。
OpenCV由各种不同组件组成。OpenCV源代码主要由OpenCV core(核心库)、opencv_contrib和opencv_extra等子仓库组成。近些年,OpenCV的主仓库增加了深度学习相关的子仓库:OpenVINO(即DLDT, Deep Learning Deployment Toolkit)、open_model_zoo,以及标注工具CVAT等。
导读:本文将介绍OpenCV的源码结构、OpenCV深度学习应用的典型流程,以及深度学习和OpenCV DNN(Deep Neural Networks,深度神经网络)模块的背景知识,让读者可以快速认识OpenCV,消除神秘感,同时对计算机视觉从传统算法到深度学习算法的演进历史有所了解。
领取专属 10元无门槛券
手把手带您无忧上云