此数据集基于MSCOCO数据集。...由于文本的多样性和图像中背景的复杂性,数据集是具有挑战性的。文本有不同的语言(中文、英文或两者的混合)、字体、大小、颜色和方向。...数据集分为训练集和测试集两部分,训练集包含从原始数据集中随机选择的300个图像,其余200个图像构成测试集,此数据集中的所有图像都已完全注释。 ?...5、ICDAR 数据集下载链接:https://rrc.cvc.uab.es/ ICDAR作为一个Challenge性质的平台,包含了2011~2019年各类OCR相关的数据集。 ? ?...7、Chinese Text in the Wild(CTW) 数据集下载链接:https://ctwdataset.github.io/ 数据集介绍:主要包括3万多幅街景图像中注释的3850个独特的中文文本数据集
放假了,终于可以继续可以静下心写一写OCR方面的东西。上次谈到文字的切割,今天打算总结一下我们怎么得到用于训练的文字数据集。...现在开始一步一步生成我们的3755个汉字的印刷体文字数据集。...我一共使用了十三种汉字字体作为我们接下来汉字数据集用到的字体,具体如下图: ?...额外的图像增强 第三步生成的汉字图像是最基本的数据集,它所做的图像处理仅有旋转这么一项,如果我们想在数据增强上再做多点东西,想必我们最终训练出来的OCR模型的性能会更加优秀。...至此,我们所需的印刷体汉字数据集已经成功生成完毕,下一步要做的就是利用这些数据集设计一个卷积神经网络做文字识别了!
有个需求,需要从一张图片中识别出中文,通过python来实现,这种这么高大上的黑科技我们普通人自然搞不了,去github找了一个似乎能满足需求的开源库-tesseract-ocr: Tesseract的...OCR引擎目前已作为开源项目发布在Google Project,其项目主页在这里查看https://github.com/tesseract-ocr, 它支持中文OCR,并提供了一个命令行工具。...如果要识别中文需要下载对应的训练集:https://github.com/tesseract-ocr/tessdata ,下载”chi_sim.traineddata”,然后copy到训练数据集的存放路径...image = Image.open('test.png') code = pytesseract.image_to_string(image, lang='chi_sim') print(code) OCR...速度比较慢,大家可以拿一张包含中文的图片试验一下。
下载数据集请登录爱数科(www.idatascience.cn) 包含一些中文新闻文本,可用于训练中文自动分词。 1. 字段描述 2. 数据预览 3. 字段诊断信息 4. 数据来源
在本文中,我们将介绍如何基于已有的OCR(光学字符识别)模型,通过自己的数据集进行进一步优化。优化OCR模型可以提高其对特定任务和领域的准确性和适应性。以下是详细的步骤和方法。...OCR模型,我们需要收集包含各种字体、格式和语言的图像数据。...建议数据集应包括:不同字体和大小的文本图像各种格式(如扫描文档、照片)不同语言的文本图像(如果需要)数据集应分为训练集、验证集和测试集。确保数据集的多样性,以提高模型的泛化能力。...2.2 模型微调为了使OCR模型更好地适应我们的数据集,我们可以进行迁移学习和微调。迁移学习是使用预训练模型的权重,然后在自己的数据集上进一步训练。...主要步骤包括数据集准备和预处理、模型选择和微调、模型评估、以及超参数调整。通过这些方法,可以显著提高OCR模型在特定任务上的性能。希望本文对你有所帮助,祝你在OCR模型优化的道路上取得成功!
OCR 已经广泛地应用于身份认证、财税报销、文档电子化等场景。 项目地址在文末! 今天和大家介绍一个超轻量级的中文 OCR 项目,目前这个项目已在 GitHub 上标星 6.7k。...本项目基于 chineseocr 与 psenet 实现中文自然场景文字检测及识别,支持竖排文字识别,支持 ncnn、mnn、tnn 推理 ( dbnet(1.8M) + crnn(2.5M) + anglenet...第三方 Demo 根据本项目,基于 TNN 实现的轻量级中文字符 ocr demo,支持 iOS 和 Android 系统,凭借 TNN 优化的 CPU(ARMv7、ARMv8) 和 GPU(OpenCL...Android 识别展示 .Net Demo 识别展示 第三方 TNN Demo 识别展示 从这些第三方应用上看这款轻量级 OCR 识别效果也很优秀。
近日华南理工大学金连文老师组在文本识别领域又出牛文,提出一种基于像素级不规则文本纠正的识别新算法MORAN(Multi-Object Rectified Attention Network),刷新了多个OCR...数据集的最高精度,并将其开源了!...在常用的IIIT 5K、IC03、IC13、SVT、SVT-Perspective、CUTE80、IC15等7个OCR数据集上,取得了state-of-the-art的识别性能。...ASRN网络结构 最终的MORAN算法在多个数据集上均超越了state-of-the-art。 实验结果 作者称论文投稿时达到多个数据集当时最高准确率。
// 根据名称查找数据集合 TCComponentDatasetType datasetType = (TCComponentDatasetType) TCUtil.GetSession().getTypeComponent
安装opencv-python开发包 pip install opencv-python 安装Tesseract-OCR Python SDK支持 pip install pytesseract 下载Tesseract-OCR...然后在环境变量中添加 C:\Program Files\Tesseract-OCR 03 验证与测试 安装与配置好OpenCV-Python与Tesseract-OCR之后,需要进一步通过代码验证正确性...Tesseract-OCR介绍 开源的OCR识别引擎,高版本识别基于LSTM,其整个处理流程如下: ?...中文识别 默认情况下Tesseract-OCR不支持中文识别,需要下载中文识别的模型文件,然后放置到安装路径的tessdata目录下: C:\Program Files\Tesseract-OCR\tessdata...其中chi_sim表示中文简体支持,eng表示英文支持! 以下图为例: ?
如果是想训练一个手写体识别的模型,用一些前人收集好的手写文字集就好了,比如中科院的这些数据集。...现在开始一步一步生成我们的3755个汉字的印刷体文字数据集。...我一共使用了十三种汉字字体作为我们接下来汉字数据集用到的字体,具体如下 图: ?...额外的图像增强 第三步生成的汉字图像是最基本的数据集,它所做的图像处理仅有旋转这么一项,如果我们想在数据增强上再做多点东西,想必我们最终训练出来的OCR模型的性能会更加优秀。...至此,我们所需的印刷体汉字数据集已经成功生成完毕,下一步要做的就是利用这些数据集设计一个卷积神经网络做文字识别了!
本文为你推荐中文自然语言处理数据集。.../ChineseNLPCorpus 以下来自该项目介绍页 中文自然语言处理数据集,平时做做实验的材料。...Bakeoff 2005:一共有四个数据集,包含繁体中文和简体中文,下面是简体中文分词数据。...Chinese-Word-Vectors 中文完形填空数据集 下载地址:https://github.com/ ymcui/Chinese-RC-Dataset 中华古诗词数据库 最全中华古诗词数据集...下载地址:https://github.com/kfcd/chaizi 中文数据集平台 搜狗实验室 搜狗实验室提供了一些高质量的中文文本数据集,时间比较早,多为2012年以前的数据。
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 上一节我们利用了RNN(GRU)对中文文本进行了分类,本节我们将继续使用...CNN对中文文本进行分类。...数据处理还是没有变,只是换了个模型,代码如下: # coding: utf-8 from __future__ import print_function import os import sys...") # 载入训练集与验证集 start_time = time.time() train_dir = '/content/drive/My Drive/NLP/dataset/...total_batch) if total_batch % config.print_per_batch == 0: # 每多少轮次输出在训练集和验证集上的性能
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1、训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词后的...对训练集和测试集进行同样的清理后保存: def save(content_list,label_list): path = '/content/drive/My Drive/NLP/dataset/...进行测试,这里我们的测试集和验证集是同样的: def test(): print("Loading test data...")...(可选),要将训练好的向量和词编号进行对应; 将数据集中的句子中的每个词用编号代替,对标签也进行编号,让标签和标签编号对应; 文本可使用keras限制它的最大长度,标签进行onehot编码; 读取数据集...(文本和标签),然后构建batchsize 搭建模型并进行训练和测试; 至此从数据的处理到文本分类的整个流程就已经全部完成了,接下来还是对该数据集,使用CNN进行训练和测试。
和之前介绍的不同,重构了些代码,为了使整个流程更加清楚,我们要重新对数据进行预处理。 阅读本文,你可以了解中文文本分类从数据预处理、模型定义、训练和测试的整个流程。...一、熟悉数据 数据的格式是这样子的: 基本目录如下: ? 其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: ?...fp.read() label = [[label2idx[label]] for label in labels.splitlines()] return data,label 将训练数据拆分为训练集和验证集...l2Loss = tf.constant(0.0) # 词嵌入层, 位置向量的定义方式有两种:一是直接用固定的one-hot的形式传入,然后和词向量拼接,在当前的数据集上表现效果更好...另一种 # 就是按照论文中的方法实现,这样的效果反而更差,可能是增大了模型的复杂度,在小数据集上表现不佳。
关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试用一下,分享到博客让有同样兴趣的人少走弯路。 文中所用到的身份证图片资源是百度找的,如有侵权可联系我删除。...一、准备工作 1、下载Tesseract-OCR引擎,注意要3.0以上才支持中文哦,按照提示安装就行。 2、下载chi_sim.traindata字库。要有这个才能识别中文。...下好后,放到Tesseract-OCR项目的tessdata文件夹里面。 3、下载jTessBoxEditor,这个是用来训练字库的。 以上的几个在百度都能找到下载,就不详细讲了。...四、测试 1、把 normal.traineddata 复制到Tesseract-OCR 安装目录下的tessdata文件夹中 2、识别命令: 1 tesseract mjorcen.normal.exp0
其中train存放的是训练集,answer存放的是测试集,具体看下train中的文件: ? 下面有20个文件夹,对应着20个类,我们继续看下其中的文件,以C3-Art为例: ?...2、数据预处理 (1)将文本路径存储到相应的txt文件中 我们要使用数据,必须得获得文本以及其对应的标签,为了方便我们进行处理,首先将训练集中的txt的路径和测试集中的txt的路径分别存到相应的txt文件中...,具体代码如下: def txt_path_to_txt(): #将训练数据的txt和测试数据的txt保存在txt中 train_path = "/content/drive/My Drive/...张晓凌 ( 中国艺术研究院 美术 研究所 研究员 ) : 我 最早 介入 “ 艺术 与 科学 ” 这个 主题 是 作为 撰稿人 为 这个 展览 搞 一个 专题片 , 一共 五集 , 我 写 第一集 ,...如果想提高分类的性能,则需要进一步的数据预处理以及模型的调参了。
下载数据集请登录爱数科(www.idatascience.cn) 由电商平台爬取的图书信息,包括书名、出版信息、当前价格等。 1. 字段描述 2. 数据预览 3. 字段诊断信息 4....数据来源 当当网搜索页面爬取。
下载数据集请登录爱数科(www.idatascience.cn) 其记录了2014年之前天文学家在恒星(除了太阳)周围发现的行星的信息。 1. 字段描述 2. 数据预览 3....数据来源 来源于UCI机器学习库。
下载数据集请登录爱数科(www.idatascience.cn) 通过物理测量预测鲍鱼的年龄。...从原始数据中删除了缺失值的样本,并且对连续值的范围进行了缩放。数据集共4177个样本,8个字段 1. 字段描述 2. 数据预览 3. 字段诊断信息 4....数据来源 Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn and Wes B Ford (1994) "The Population...数据引用 Nash W J, Sellers T L, Talbot S R, et al.
演讲嘉宾:冀永楠,现为腾讯云大数据AI产品中心高级研究员。负责了腾讯云与华星光电等多个图像AI项目。 [7.28冀永楠OCR的应用集锦及背后技术-01.jpg] 今天分享的主要是OCR的部分。...现在用这四个特征来描述我们的服务,第一我们要求服务是准确的;另外要求我们的服务是完备的,就是说能识别英文也能识别中文,也能识别字符。我们现在可以识别一部分的少数民族文字。...还有一个就是说语言文字本身,最简单是英文OCR。一般来讲中文稍微简单一点。中文繁体字、手写字,国内少数民族文字等使用场景因为数据来源少,场景复杂难度有所增加。 文字大小不一以及文本背景复杂。...目前腾讯云基本上已经不采用这种传统的方式,而是以端到端的方式为主,那么除了端到端的方式根据不同的场景应用,已经产生了一套类似工具集的方法。...对于不同的应用场景,只需从工具集里找出最为适配这个场景的工具或者模块,再将它们串起来进行调优,最后形成了整体识别的模型。 接下来先给大家介绍一下腾讯云上的服务,再介绍一下我们做过的一些综合类应用。
领取专属 10元无门槛券
手把手带您无忧上云