(★★☆) (提示: np.add.reduce) # Author: Evgeni Burovski Z = np.arange(10) np.add.reduce(Z) # np.add.reduce
42]] ''' 通用函数的方法 import numpy as np a = np.arange(9) # a[0] op a[1] op ... op a[n] print "Reduce", np.add.reduce...print "Reduceat", np.add.reduceat(a, [0, 5, 2, 7]) # Reduceat [10 5 20 15] print "Reduceat step I", np.add.reduce...# Reduceat step I 10 print "Reduceat step II", a[5] # Reduceat step II 5 print "Reduceat step III", np.add.reduce...(a[2:7]) # Reduceat step III 20 print "Reduceat step IV", np.add.reduce(a[7:]) # Reduceat step IV 15
arctan,arcos,arcsin np.log ln(x) np.log2 log2(x) np.log10 log10(x) 聚合: x=np.arange(1,6) np.add.reduce
[ 6, 13, 21]], dtype=int32) 2.add.reduce() 求和 axis决定方向 a数组是: array([0, 1, 2, 3, 4, 5, 6, 7, 8]) np.add.reduce... b=np.arange(12).reshape(3,4) #准备一个3行4列的数组 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) np.add.reduce...(b,axis=0) #竖着加 array([12, 15, 18, 21]) np.add.reduce(b,axis=1) #横着加 array([ 6, 22, 38]) 3.add.reduceat
array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce...array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce
np.math.factorial(k)/np.math.factorial(n+k) for k in range(k_max)],dtype = np.double) #print(y) return np.add.reduce
image.png Numpy已有的通用函数具备的方法 4种方法: 1 np.add.accumulate返回对矩阵求和结果,和np.sum效果相同,返回值数据类型为整数int 2 np.add.reduce...ndarray对象的第3个元素是a所有元素+3的结果 import numpy as np a = np.arange(1,11) print("add.reduce result:") print(np.add.reduce
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval Out[10]: <matplotlib.axes....return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval Out[12]: <matplotlib.axes.
" ufunc对象 """ # reduce方法 # op.reduce(a),将op沿着某个轴应用,使得数组啊的维数降低一维 a = np.array([3, 4, 5, 6, 9]) print(np.add.reduce
3, 6], dtype=int32) >>> np.add.accumulate([1,2,3,4,5]) array([ 1, 3, 6, 10, 15], dtype=int32) >>> np.add.reduce
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval ?
0.32288421 0.39927615 0.64877625 0.66318512 0.75063225 0.87013168] # 41 z = np.arange(10) print(sum(z)) np.add.reduce
x = np.arange(1, 6) np.add.reduce(x) # 15 对multiply通用函数调用reduce方法会返回数组中所有元素的乘积。
.reduce (array=, axis=0, dtype=None) 例如: >>> np.add.reduce([1,2,3]) # 1 + 2 + 3 6 >>> np.add.reduce
返回两个数组中相除后的余数组成的数组 numpy.Fmod()余数的正负由被除数决定,与除数无关 通用函数 numpy.frompyfunc()创建通用函数 生成输入两个参数输出一个参数的ufunc对象, np.add.reduce
领取专属 10元无门槛券
手把手带您无忧上云