我们通常将 Redis 作为缓存使用,提高读取响应性能,一旦 Redis 宕机,内存中的数据全部丢失,假如现在直接访问数据库大量流量打到 MySQL 可能会带来更加严重的问题。
AOF(Append Only File)文件是Redis的持久化方式之一,用于将所有写操作追加到文件中,以保证数据的持久性。
平衡二叉树的查找效率是非常高的,并可以通过降低树的深度来提高查找的效率。但是当数据量非常大,树的存储的元素数量是有限的,这样会导致二叉查找树结构由于树的深度过大而造成磁盘 I/O 读写过于频繁,进而导致查询效率低下。
在日常使用MySQL的过程中,会遇到 CPU 使用率过高甚至达到 100% 的情况。CPU飙升会导致数据库无法连接,事务无法提交等一系列问题。本文基于日常问题处理介绍造成CPU飙升的原因以及解决方法。
MYSQL 应该是最流行了 WEB 后端数据库。WEB 开发语言最近发展很快,PHP, Ruby, Python, Java 各有特点,虽然 NOSQL 最近越來越多的被提到,但是相信大部分架构师还是会选择 MYSQL 来做数据存储。
EasyNVR是基于RTSP/Onvif协议接入的安防视频云服务平台,它可以将前端设备进行快速便捷地接入、采集、视频转码、处理及分发,分发的视频流包括:RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等。
CPU使用率:CPU的使用率 平均负载:单位时间内的活跃线程数 用户时间:CPU在用户进程上的实际百分比 系统时间:CPU在内核上花费的实际百分比 空闲时间:系统处于在等待IO操作上的时间总和 等待:CPU花费在等待IO操作上的时间总和 Nice时间:CPU优先执行的时间百分比
innodb_io_capacity:脏页的刷新的数量,可以动态调整,默认是200,该参数的设置取决于硬盘的IOPS的大小,IOPS就是每秒的读写次数。
目前网站架构一般分成网页缓存层、负载均衡层、 WEB 层和数据库层,我其实一般还会多加一层,即文件服务器层,这样我们在后面的讨论过程中,我们可以依次用这五层对网站架构来进行讨论;这里为了更具有说服力,我将用三个并发较大的生产环境来说明下,一个是我现在维护的电子商务网站(并发最大峰值 2900,日 PV500 万左右)、我目前维护的电子广告网站(并发最大峰值 1500,日 PV150 万左右)、以前维护的大型 CDN 门户广告网站(并发最大峰值 5000,日 PV5000 万左右)。 网页缓存层 首先
我们都知道,数据库是用于存取数据的。然而,存取数据会涉及到磁盘I/O的读写操作,这使得I/O读写成为数据库系统的主要性能瓶颈。为了解决这个问题,MySQL数据库采用了许多内存管理技术来优化数据库操作,包括内存优化查询、排序以及写入操作。
随着业务量越来越大,单台数据库服务器性能已无法满足业务需求,该考虑增加服务器扩展架构了。主要思想是分解单台数据库负载,突破磁盘I/O性能,热数据存放缓存中,降低磁盘I/O访问频率。
众所周知, Java 在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法;
文章目录 缓冲池 Buffer Pool 刷脏页的时机 MySQL定时刷 MySQL内存(buffer pool)不足的时候 MySQL正常关闭的时候 redo log满了的时候 刷脏导致的性能问题
索引是一种帮助mysql高效的获取数据的数据结构,这些数据结构以某种方式引用数据,这种结构就是索引。可简单理解为排好序的快速查找数据结构。如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/148807.html原文链接:https://javaforall.cn
在实际的性能测试中,会遇到各种各样的问题,比如 TPS 压不上去等,导致这种现象的原因有很多,测试人员应配合开发人员进行分析,尽快找出瓶颈所在。
备注: 这一我在去年国庆节期间,整理的整个19年,学员的面试遇到的问题,整理出来之后发给后期的学员,让他们做参考和学习,看看公司会面试哪些问题。
MySQL调优可以从几个方面来做: 1. 架构层: 做从库,实现读写分离; 2. 系统层次: 增加内存; 给磁盘做raid0或者raid5以增加磁盘的读写速度;可以重新挂载磁盘,并加上noatime参数,这样可以减少磁盘的i/o; 3. MySQL本身调优: 如果未配置主从同步,可以把bin-log功能关闭,减少磁盘i/o 在my.cnf中加上skip-name-resolve,这样可以避免由于解析主机名延迟造成mysql执行慢 调整几个关键的buffer和cache。调整的依据,主要根据数据库的状态来调试
哈啰出行作为阿里系共享单车的头部企业,在江湖中的知名度还是有的,而今天我们就来看一道哈啰 Java 一面中的经典面试题:当数据表中数据量过大时,应该如何优化查询速度?
上篇说到了MySQL总共分为4层,分别是网络连接层,核心层,存储引擎层和物理层。大家已经了解了MySQL数据库的体系,那该篇就写明存储引擎层InnoDB的体系结构。
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询,更新数据库中表的数据。索引的实现通常使用B树和变种的B+树(MySQL常用的索引就是B+树)。除了数据之外,数据库系统还维护为满足特定查找算法的数据结构,这些数据结构以某种方式引用数据,这种数据结构就是索引。简言之,索引就类似于书本,字典的目录。
Redis的读写操作都是在内存中,所以Redis性能才会高,但是当Redis重启后,内存中的数据就会丢失,那为了保存内存中的数据不会丢失,Redis实现了数据持久化机制,会把数据保存到磁盘,这样Redis重启就能够从磁盘恢复原有的数据
分类:分为水平分区(Horizontal Paritioning)和垂直分区(Vertical Partitioning)
3.性能最大化,redis开始持久化时,分叉出进程,由子进程完成持久化的工作 ,避免服务器进程执行I/O操作,启动效率高
在很多项目,特别是互联网项目,在使用MySQL时都会采用主从复制、读写分离的架构。
我这里按公司实际场景,规定了,每次操作/获取数据量应该少于5000条,结果集应该小于2M
在网络层的背后,每一个业务都需要数据的支撑,数据库的优化在整个系统中就显得至关重要了。 虽然 NoSQL 在并发性能上要优于传统的 DBA,但由于 MySQL 在扩展性等方面的优势,MySQL 依然作为企业级数据存储的首选。
MySQL支持多种数据存储引擎,其中最常见的是MyISAM和InnoDB引擎。可以通过使用"show engines"命令查看MySQL支持的存储引擎。
1. InnoDB 支持事务,MyISAM 不支持事务。这是 MySQL 将默认存储引擎从 MyISAM 变成 InnoDB 的重要原因之一; 2. InnoDB 支持外键,而 MyISAM 不支持。对一个包含外键的 InnoDB 表转为 MYISAM 会失败;
今天是《分库分表 ShardingSphere 原理与实战》系列的开篇文章,之前写过几篇关于分库分表的文章反响都还不错,到现在公众号:程序员小富后台不断的有人留言、咨询分库分表的问题,我也没想到大家对于分库分表的话题会这么感兴趣,可能很多人的工作内容业务量较小很难接触到这方面的技能。这个系列在我脑子里筹划了挺久的,奈何手说啥也不干活,就一直拖到了现在。
升级硬件通常是我们的第一考虑,主要原因是数据库会占用大量资源。不过这种解决方案也就仅限于此了。实际上,您通常可以让CPU或磁盘速度加倍,也可以让内存增大 4 到 8 倍。
我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念。 物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,虚拟内存就是为了满足物理内存的不足而提出的策略,它是利用磁盘空间虚拟出的一块逻辑内存,用作虚拟内存的磁盘空间被称为交换空间(Swap Space)。 作为物理内存的扩展,linux会在物理内存不足时,使用交换分区的虚拟内存,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样以来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。 Linux的内存管理采取的是分页存取机制,为了保证物理内存能得到充分的利用,内核会在适当的时候将物理内存中不经常使用的数据块自动交换到虚拟内存中,而将经常使用的信息保留到物理内存。
为了理解 Kafka 是如何做到以上所说的功能,从下面开始,我们将深入探索Kafka 的特性。
当前形势不佳,在这种情况下。小猫更是雪上加霜,他被裁了。投了个把月简历,终于约到一个面试。
Mysql性能优化 Mysql的性能参数可以分为以下几个大类,这里仅整理一些常用的参数配置
今天笔者遇到一个问题,Redis 如何在服务宕机时保证数据的可靠性——数据的持久化和一致性,发现对部分知识点的理解还不够深入,故这里记录一下学习笔记
1 包含访问hbase的接口,client维护着一些cache来加快对hbase的访问,比如regione的位置信息。
OPTIMIZE TABLE 语句通过拷贝表数据并重建表索引,使得索引数据更加紧凑,减少空间碎片。语句的执行效果会因表的不同而不同。过大的表或者过大的索引及初次添加大量数据的情况下都会使得这一操作变慢。
适时的使用 OPTIMIZE TABLE 语句来重组表,压缩浪费的表空间。这是在其它优化技术不可用的情况下最直接的方法。OPTIMIZE TABLE 语句通过拷贝表数据并重建表索引,使得索引数据更加紧凑,减少空间碎片。语句的执行效果会因表的不同而不同。过大的表或者过大的索引及初次添加大量数据的情况下都会使得这一操作变慢。
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
经常面试都会问到MYSQL有哪些存储引擎,以及各自的优缺点。今天主要分享常见的存储引擎:MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)等,以及最常用的MyISAM与InnoDB两个引擎 ,文章尾部有两者的详细比较。
DDL 操作一直是我们的 MYSQL 的一个软肋,从MYSQL 5.6 其实相关的alter 语句已经有了改变,也就是题目的的inplace 和 copy 。其实很多人都知道,但用的比较少,因为有pt-OSC 工具呀,还有另外一个工具gh-ost
转载自http://www.cnblogs.com/luyucheng/p/6340076.html
领取专属 10元无门槛券
手把手带您无忧上云