持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。大多数情况下,特别是企业级应用,数据持久化意味着将内存中的数据保存到硬盘上加以”固化”,而持久化的实现过程大多通过各种关系数据库来完成。
我们在使用mysql数据库时,有时我们的程序与数据库不在同一机器上,这时我们需要远程访问数据库。
MYSQL 8.0 已经很多年了,但是,但是,但是,还有很多公司和业务项目在MYSQL5.6 ,5.7上继续奋斗,这还不是一个重要的问题,重要的问题是早期在MYSQL 5.7 上的一些基础,并未进行改变后到了MYSQL 8 上的使用一段时间产生的问题。
如果备库执行日志的速度持续低于主库生成日志的速度,那这个延迟就有可能成了小时级别。而且对于一个压力持续比较高的主库来说,备库很可能永远都追不上主库的节奏。
MySQL主从介绍 MySQL主从又叫做Replication、AB复制。简单讲就是A和B两台机器做主从后,在A上写数据,另外一台B也会跟着写数据,两者数据实时同步的 MySQL主从是基于binlog的,主上须开启binlog才能进行主从。 主从过程大致有3个步骤 1)主将更改操作记录到binlog里 2)从将主的binlog事件(sql语句)同步到从本机上并记录在relaylog里 3)从根据relaylog里面的sql语句按顺序执行 主上有一个log dump线程,用来和从的I/O线程传递b
在上一篇文章中,我和你介绍了几种可能导致备库延迟的原因。你会发现,这些场景里,不论是偶发性的查询压力,还是备份,对备库延迟的影响一般是分钟级的,而且在备库恢复正常以后都能够追上来。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
在项目中,一个数据库有很多人需要使用,不能所有的人都使用相同的权限,如果人比较多,一人一个用户也很难管理。一般来说,会分超级管理员权限,管理员权限,读写权限,只读权限等,这样方便管理。当然,具体怎么管理权限根据实际情况来确定。
Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了import和export这两个工具。这两个工具非常强大,提供了很多选项帮助我们完成数据的迁移和同步。比如,下面两个潜在的需求:
介绍了为什么MySQL使用B+TREE 而 MongoDB使用B-TREE
之前的文章谈到的事故原因,不论是偶发性的查询压力,还是备份,对备库延迟的影响一般是分钟级的,而且在备库恢复正常以后都能够追上来。
这段时间分享了很多校招的面经,有很多读者说想看社招的,其实社招面试是基于你的工作项目来展开问的,比如你项目用了 xxx 技术,那么面试就会追问你项目是怎么用 xxx 技术的,遇到什么难点和挑战,然后再考察一下这个 xxx 技术的原理。
是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能。
连接(Join)是关系数据库重要特性,它和事务常被作为数据库与文件系统的两个重要区别项。程序员江湖一直流传着某某 baba 的神秘开发宝典,其中数据库部分有重要一条避免过多表的 Join,奈何 Join 特性实在是好用,广大程序员们无视着宝典的谆谆教诲,依旧每天乐此不疲的使用这 Join 特性。那数据库有哪些连接算法呢?它们的实现方式是怎样呢?它们之间又有什么区别呢?为什么需要这么多不同的连接算法呢?如果你也好奇这些问题,那么请继续往下阅读,本文将逐一回答上述问题。
MySQL 8.0 最新小版本(8.0.31)支持标准SQL 的intersect(交集)和except(差集)操作。
导读:本文从MySQL架构、MySQL日志、MySQL的MVCC、MySQL索引、MySQL语法分析及优化、执行计划和慢查询日志、主从备份、分布式事务等方面进行了体系化的讲述。
DQL(Data Query Language),即数据查询语言,用来查询数据记录。DQL 基本结构由 SELECT FROM、WHERE、JOIN 等子句构成。
在 MySQL 里面,grant 语句是用来给用户赋权的。不知道你有没有见过一些操作文档里面提到,grant 之后要马上跟着执行一个 flush privileges 命令,才能使赋权语句生效。我最开始使用 MySQL 的时候,就是照着一个操作文档的说明按照这个顺序操作的。
关于MySQL 的 join,大家一定了解过很多它的“轶事趣闻”,比如两表 join 要小表驱动大表,阿里开发者规范禁止三张表以上的 join 操作,MySQL 的 join 功能弱爆了等等。这些规范或者言论亦真亦假,时对时错,需要大家自己对 join 有深入的了解后才能清楚地理解。
是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源。通过将一组相关操作组合为一个要么全部成功要么全部失败的单元,可以简化错误恢复并使应用程序更加可靠。一个逻辑工作单元要成为事务,必须满足所谓的ACID(原子性、一致性、隔离性和持久性)属性。事务是数据库运行中的一个逻辑工作单位,由DBMS中的事务管理子系统负责事务的处理。
本文由读者 muggle 投稿,muggle 是一位具有极客精神的 90 后优秀单身老实猿。muggle 的个人博客地址是 http://muggle.javaboy.org。本文较长,认真读完后相信你一定会有所收获。
所有 MySQL 命令的列表:注意,所有文本命令必须在一行的开头,并且以分号“;”结束
我们可以直接把数据存放到文件中,这样也能保证数据长期存储,那为什么还要搞一个 数据库 呢?
小胖真的让人不省心。继上次小胖误删数据之后,这次这货直接给我把整个表锁住了。页面无响应,用户疯狂投诉,我特么脸都绿了。。。
mysql数据库存储数据的方式与excel类似,都是以表格的形式来存储数据。 excel一般用一张表来存储少量的数据,数据库可以用多个表来存储大量的数据。
1)内连接:join, inner join 2)外连接:left join, left outer join, right join, right outer join, union; 3) 交叉连接:cross join
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
转转二手交易网 —— 把家里不用的东西卖了变成钱,一个帮你赚钱的网站。由腾讯与 58 集团共同投资。为海量用户提供一个有担保、便捷的二手交易平台。转转是 2015 年 11 月 12 日正式推出的 APP,遵循“用户第一”的核心价值观,以“让资源重新配置,让人与人更信任”为企业愿景,提倡真实个人交易。
MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于 Oracle 公司。MySQL 是一种关联数据库管理系统,关联数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
在工作中,我们误删数据或者数据库,我们一定需要跑路吗?我看未必,程序员一定要学会自救,神不知鬼不觉的将数据找回。
初学者在看到这个问题的时候,可能首先想到的是 MySQL 一张表到底能存放多少条数据?
Collation 主要的作用是什么,排序。 数据库中的字符众多,而在这里很多的查询中都对这些符号进行一些比对的工作,如 A = a , B > BA , c < v 等等在查询中进行的条件输入的工作,而字符和字符之间如何进行比对,这个就全部依靠我们的collation 了,如我们规定了 A = 0 B = 1 则, B > A 是成立的,所有collation是一套字符的编码集合,collation会影响到order by的语句顺序,会影响到where 条件比对后的结果,同时也会影响distinct, group by , having 等语句查询的结果,不光如此,还会影响字符型的字段建立索引后的顺序等。
通常如果我们在使用多种数据库的时候,最头痛的是数据库不唯一,SQL SERVER 访问 ORACLE ,ORACLE 访问 MYSQL ,MYSQL 访问 SQL SERVER,这的确不是一件美好的事情, 而强大的PG的 FDW 可以解决这样的问题。通过 FDW ,foreign-data wrapper 来解决各种数据库的数据融合的问题。基本上市面上有的数据库,POSTGRESQL 都可以进行FDW的连接,例如创建数据表,读取,插入,更改数据表等等都是可以的。
实际上上篇已讲到如何启动MySQL。两种方法: 一是用winmysqladmin,如果机器启动时已自动运行,则可直接进入下一步操作。 二是在DOS方式下运行
在 FreeWheel 的核心业务系统中,我们使用 MySQL 来存储数据。但随着数据量的不断增加,原有数据库已经无法满足如今的业务需求。经过前期大量的调研,我们决定将 MySQL 中的部分表迁移到 AWS Dynamodb 中。本文主要介绍从关系型数据库平顺迁移到非关系型数据库的实践经验。
在关系型数据库管理系统(RDBMS)中,连接查询是一项重要的数据库操作,它允许我们从多个表中检索和组合数据,以便进行更复杂的查询和分析。
小编说:人生苦短,我用Python,使用Python可以操作各种主流的数据库,本文作者李刚,带你快速入门用Python操作MySQL数据库。
北冥有 Data,其名为鲲,鲲之大,一个 MySQL 放不下。千万量级的数据,用 MySQL 要怎么存?
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显。关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情。当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能。这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库。希望下面的这些优化技巧对你有用。 为查询缓存优化你的查询 大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎
从上图我们可以查看出 MySQL 当前默认的存储引擎是InnoDB,并且在5.7版本所有的存储引擎中只有 InnoDB 是事务性存储引擎,也就是说只有 InnoDB 支持事务。
客户需要将华为云rds for MySQL和天翼云rds for MySQL做一个双向同步,当华为云rds宕机的时候,可以切换到天翼云继续提供服务,而且此时,天翼云的数据也可以自动同步到华为云rds,平时只使用华为云的rds,和双A方案有点差异,需要注意的是rds环境不能安装任何的软件,所以,我目前想到的方案有:
在“集群”标签,勾选“使用集群”,然后定义三个分区。这里的分区实际指的是数据库实例,需要指定自定义的分区ID,数据库实例的主机名(IP)、端口、数据库名、用户名和密码。定义分区的目的是为了从某一个分区甚至某一个物理数据库读取和写入数据。一旦在数据库连接里面定义了数据库分区,就可以基于这个信息创建了一个分区schema。
行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。有可能会出现死锁的情况。 行级锁按照使用方式分为共享锁和排他锁。
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显。关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情。当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能。这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库。希望下面的这些优化技巧对你有用。
本系列将会讲解MySQL数据库从基础,入门,运维,本章将会对MySQL数据库的客户端连接与数据模型,SQL等知识。
刚开始多数项目用单机数据库就够了,随着服务器流量越来越大,面对的请求也越来越多,我们做了数据库读写分离, 使用多个从库副本(Slave)负责读,使用主库(Master)负责写,master和slave通过主从复制实现数据同步更新,保持数据一致。slave 从库可以水平扩展,所以更多的读请求不成问题
领取专属 10元无门槛券
手把手带您无忧上云