上篇文章介绍了条件列,排序,分组都可以建立索引,select查询不需要建立,长字符串建立二级索引可以用索引前缀建立或者建立hash索引,避免时间和空间的浪费。建立索引的时候,列的类型尽量小点。还要看当前列的基数,基数越小,所有数据都一样,都无法排序,大量数据需要回表查询,所以基数越大才适合建立所以。
数据库优化是一个很常见的面试题,下面就针对这一问题详细聊聊如何进行索引与sql的分析与优化。
使用explain关键字可以模拟优化器执行SQL语句,从而知道MySQL是如何使用索引来处理你的SQL查询语句以及连接表,可以分析查询语句或是结构的性能瓶颈,帮助我们选择更好的索引和写出更优化的查询语句。(说白了,就是优化SQL的工具)
这些天,一半的时间都花在练车了,导致毕设进度就慢下来了。而且最近完美主义越来越严重,就加了个调优的小版本。本来今天应该进入第二个阶段了(主redis),结果现在还在对第一个版本进行调优。所以目前还是主mysql。
上篇文章回忆了innodDB的独立表空间和系统表空间的结构,因为需要梳理的知识点太多,所以额外用一篇。
1、减少数据冗余:(数据冗余是指在数据库中存在相同的数据,或者某些数据可以由其他数据计算得到),注意,尽量减少不代表完全避免数据冗余;
索引是帮助MySQL高效获取数据的数据结构。索引是在存储引擎中实现的,所以每种存储引擎中的索引都不一样。如MYISAM和InnoDB存储引擎只支持BTree索引;MEMORY储存引擎可以支持HASH和BTREE索引。
1. 减少数据冗余:(数据冗余是指在数据库中存在相同的数据,或者某些数据可以由其他数据计算得到),注意,尽量减少不代表完全避免数据冗余;
在Python中,可以使用MySQL官方提供的Python库mysql-connector-python来连接和操作MySQL数据库。连接MySQL数据库后,我们可以使用SQL语句执行查询并获取查询结果。在本文中,我们将详细介绍如何处理MySQL查询结果。
Union:union和union all都叫几个select,除了最左边的是primary,其他都是union。
MYSQL的查询缓存本质上是缓存SQL的hash值和该SQL的查询结果,如果运行相同的SQL,服务器将直接从缓存中删除结果,不再分析、优化、最低成本的执行计划等一系列操作。
MySQL查询缓存,query cache,是MySQL希望能提升查询性能的一个特性,它保存了客户端查询返回的完整结果,当新的客户端查询命中该缓存,MySQL会立即返回结果。
需要注意的是,查询的执行顺序可能会因查询的复杂性、索引的存在与否、表的大小以及其他因素而有所不同。MySQL的查询优化器会尽力选择最佳的执行计划,以提高查询性能。同时,可以使用EXPLAIN语句来查看MySQL执行查询时选择的执行计划,以帮助调优查询性能。
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。 如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
可以使用解释或显示计划工具来显示SELECT、DECLARE、UPDATE、DELETE、TRUNCATE TABLE和一些INSERT操作的执行计划。这些操作统称为查询操作,因为它们使用SELECT查询作为其执行的一部分。InterSystems IRIS在准备查询操作时生成执行计划;不必实际执行查询来生成执行计划。
以上案例用到的处理器有“QueryDatabaseTable”、“ConvertAvroToJSON”、“SplitJson”、“PutHDFS”四个处理器。
昨天遇到一个问题, 200万的表里查询9万条数据, 耗时达63秒. 200万数据不算多, 查询9万也还好. 怎么用了这么长的时间呢? 问题是一句非常简单的sql. select * from tk_t
1、重新定义表的关联顺序(多张表关联查询时,并不一定按照SQL中指定的顺序进行,但有一些技巧可以指定关联顺序)
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
另外,MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
在mysql服务器高负载的情况下,必须采取一种措施给服务器减轻压力,减少服务器的I/O操作。一般采用的方法是优化sql操作语句,优化服务器的配置参数,从而提高服务器的性能。Mysql使用了几种内存缓存数据的策略来提高性能。 一、mysql的缓存机制 Mysql缓存主要包括关键字缓存(key cache)和查询缓存(query cache),这主要讲解mysql的查询缓存(query cache)机制。 1.查询缓存概述 在mysql的性能优化方面经常涉及到缓冲区(buffer)和缓存(cache
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
本文将大致介绍索引的类型、InnoDB的索引分类、如何创建索引、使用索引的注意事项等几个方面记录索引。由于侧重点的不同,本文不会全面介绍索引的知识点,例如二叉树、平衡二叉树、B Tree和B + Tree等,后面会单独针对这几种数据结构,进行深度的分享。导图连接(点击底部阅读原文,就可以打开文档连接了。)
非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树(简单说, 左边比自己小,右边比自己大)
索引在我们使用MySQL数据库时可以极大的提高查询效率,然而,有时候因为使用上的一些瑕疵就会导致索引的失效,无法达到我们使用索引的预期效果,今天介绍几种MySQL中几种常见的索引失效的原因,可以在以后的工作中尽可能避免因索引失效带来的坑。
TDSQL-C MySQL 版(TDSQL-C for MySQL)是腾讯云自研的新一代云原生关系型数据库。融合了传统数据库、云计算与新硬件技术的优势,为用户提供具备高弹性、高性能、海量存储、安全可靠的数据库服务。TDSQL-C MySQL 版100%兼容 MySQL 5.7、8.0。实现超百万级 QPS 的高吞吐,最高 PB 级智能存储,保障数据安全可靠。TDSQL-C MySQL 版采用存储和计算分离的架构,所有计算节点共享一份数据,提供秒级的配置升降级、秒级的故障恢复,单节点可支持百万级 QPS,自动维护数据和备份,最高以GB/秒的速度并行回档。TDSQL-C MySQL 版既融合了商业数据库稳定可靠、高性能、可扩展的特征,又具有开源云数据库简单开放、高效迭代的优势。TDSQL-C MySQL 版引擎完全兼容原生 MySQL,您可以在不修改应用程序任何代码和配置的情况下,将 MySQL 数据库迁移至 TDSQL-C MySQL 版引擎。
Hive是一种基于Hadoop的数据仓库软件,可以将结构化数据文件映射为一张数据库表,并提供了类SQL查询接口,使得用户可以使用SQL类语言来查询数据。Hive可以处理包括文本、CSV、JSON、ORC和Parquet等格式的数据文件,支持数据的导入、导出、转换等操作。Hive可以在Hadoop集群上运行,利用Hadoop的分布式计算能力,可以处理大规模的数据集。
Python是一种非常流行的编程语言,因为它易于学习、使用,并且具有广泛的应用领域。在数据库编程方面,Python可以很容易地与各种数据库进行交互,其中包括MySQL数据库。
答:大部分程序主要的功能都是对数据的处理,写入、查询、转化、输出。最形象的比喻就是树和内容和目录的关系,目录就是索引,我们根据目录能快速拿到想要内容的页码。
MySQL Enterprise Monitor是MySQL官方提供的一款监控和管理MySQL数据库的工具。 其功能之一包括MySQL Query Analyzer工具,通过MySQL Query Analyzer可以帮助用户识别慢查询和瓶颈,监视在MySQL服务器上执行的SQL语句,并显示每个查询的详细信息、执行次数和执行时间等有关性能的详细信息。
当我们输入不管大小写都能查询到数据,例如:输入 lingyejun 或者Lingyejun ,LingYeJun都能查询同样的结果,说明查询条件对大小写不敏感。 CREATE TABLE NAME(name VARCHAR(10));
而我们的连接器就是处理这个过程的,连接器的主要功能是负责跟客户端建立连接、获取权限、维持和管理连接,连接器在使用的过程中如果该用户的权限改变,是不会马上生效的,因为用户权限是在连接的时候读取的,只能重新连接才可以更新权限
JDBC(Java Database Connectivity)是一种用于执行SQL语句的Java API。通过这个API,可以直接连接并执行SQL脚本,与数据库进行交互。
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中. 慢查询主要是为了我们做sql语句的优化功能.
当使用PHP在MySQL中编写查询时,它的适用性将基于MySQL本身进行检查。所以使用MySQL提供的默认日期和时间格式,即’YYYY-MM-DD’
select查询优化一直是日常开发和数据库运维绕不开的一道坎,SQL的查询速度决定了页面的加载速度,进一步决定了客户浏览体验。
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中.
当你执行一次MySQL查询时,有没有仔细想过,在查询结果返回之前,经过了哪些步骤呢?这些步骤有可能消耗了超出想象的时间和资源。因此,在对MySQL的查询进行优化之前,应该了解一下MySQL查询的生命周期。
QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
Redis和MySQL都是非常流行的开源数据库,各自有其独特的用途和优点。Redis是一个基于内存的键值存储系统,适用于缓存和高速读取操作。而MySQL是一种关系型数据库管理系统,适用于数据存储和复杂查询操作。在某些情况下,将两个数据库集成在一起可以实现更强大的功能。
设计好MySql的索引可以让你的数据库飞起来,大大的提高数据库效率。设计MySql索引的时候有一下几点注意:
mysql查询优化的方法有很多种,explain是工作当中用的比较多的一种检查方式。explain翻译即解释,就是看mysql语句的查询解释计划,从解释计划我们能很清楚的看到解释的语句有没有合理用到索
MySQL是我们非常常用的关系型数据库,非常重要,所以在这里给大家整理下MySQL的高级内容。
在面对不够优化、或者性能极差的SQL语句时,我们通常的想法是将重构这个SQL语句,让其查询的结果集和原来保持一样,并且希望SQL性能得以提升。而在重构SQL时,一般都有一定方法技巧可供参考,本文将介绍如何通过这些技巧方法来重构SQL。
使用explain关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的,分析你的查询语句或是表结构的性能瓶颈。
MySQL优化一般是需要索引优化、查询优化、库表结构优化三驾马车齐头并进。 可以说,索引优化是对查询性能优化最有效的手段,索引能够轻易将查询性能提高几个数量级,“最优”的索引有时比一个“好的”索引性能要好几个数量级。创建一个真正“最优”的索引经常需要重写查询,所以索引优化和查询优化的关系很紧密。 本文是《千万级大数据查询优化》系列第一篇:创建高性能的索引。 我们先从一个面试题开始。 面试题: 如果有四条sql语句,查询条件分别是 where A=1 and B=1 and C=1. where
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
领取专属 10元无门槛券
手把手带您无忧上云