🧑个人简介:大家好,我是 shark-Gao,一个想要与大家共同进步的男人😉😉
正确地创建和使用索引是实现高性能查询的基础,本文笔者介绍MySQL中的前缀索引和多列索引。
GIthub上有两个Druid。其中一个是阿里的数据库连接池,另一个是列式存储的分布式数据存储系统。我曾经一度认为是一个东西,本文介绍后一种Druid。
利用mysql explain来对sql语句进行优化,你需要懂这些关键字各表示的含义,这样优化才有的放矢。
当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1)、count(*)、count(字段) 等。
Elasticsearch也是基于Lucene的全文检索库,本质也是存储数据,很多概念与MySQL类似的。
后端程序员在面试中,经常会被问到SQL调优的操作,于是我也是去补习了一下这方面的知识,感谢各方大佬提供的点子,这里总结如下。
作为一个后端程序员,数据库这个东西是绕不开的,特别是写sql的能力,如果您参加过多次面试,那么一定会从面试复盘中发现面试官总是会考察到sql优化这个东西。
一个文档是一个可被索引的基础信息单元。比如,可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以JSON(Javascript Object Notation)格式来表示,而JSON是一个到处存在的互联网数据交互格式
客户有2个ES集群,索引mapping格式都一样,数据量不同。执行同样的API,一个集群可以基于时间字段排序并成功返回,一个集群却无法实现排序并成功返回。客户要执行的代码如下:
作为开发人员,数据库的索引是我们再熟悉不过的了。那么实话真的会了吗,在项目开发中随便定义一个int、varchar后边跟个primary key或者加个index就好了么?考虑到这些咋还真的需要看看专业的人都是怎么做的。
55道互联网大公司的经典面试题,全部答对月薪5W+没问题。 1、一张表里面有ID自增主键,当insert了17条记录之后,删除了第15,16,17条记录,再把mysql重启,再insert一条记录,这条记录的ID是18还是15 ? 2、mysql的技术特点是什么? 3、Heap表是什么? 4、mysql服务器默认端口是什么? 5、与Oracle相比,mysql有什么优势? 6、如何区分FLOAT和DOUBLE? 7、区分CHAR_LENGTH和LENGTH? 8、请简洁描述mysql中InnoDB支持的
创建mysql数据表的时候,通常会指定类型和长度,那么到底代表什么意思呢,每种类型最大长度又是多少,经过我的查阅资料和实验,把结果记录一下
这个问题可能比较抽象,如果对MySQL索引结构不理解的人来说,可能蒙,所以建议先去看看索引结构再来看这个问题。MySQL 选择将节点大小设置为 16KB 而不是更大的原因,主要是为了在内存管理、性能、磁盘 I/O 效率、适应性和兼容性之间取得平衡。本文将从讲解页的结构开始,然后分析为什么MySQL为什么把节点大小设置为16K,而不是更大?
而默认的中文分词是将每个字看成一个词,会被分为“我”,“是”,"中","国","人"。
所有的数据库对象名称必须使用小写字母并用下划线分割(MySQL大小写敏感,名称要见名知意,最好不超过32字符) 所有的数据库对象名称禁止使用MySQL保留关键字(如 desc、range、match、delayed 等,请参考 MySQL官方保留字 【https://dev.mysql.com/doc/refman/5.7/en/keywords.html】 ) 临时库表必须以tmp为前缀并以日期为后缀(tmp_) 备份库和库必须以bak为前缀并以日期为后缀(bak_) 所有存储相同数据的
本文由读者小平同志投稿,小平是一位非常朴实认真的猿,现于某上市证券公司做微服务开发,对 MySQL 优化有深入研究,小平的博客地址是https://blog.csdn.net/weixin_41193109。
TPS(Transaction per second)每秒事务量 1052.19
问题1:char、varchar的区别是什么? varchar是变长而char的长度是固定的。如果你的内容是固定大小的,你会得到更好的性能。
取值范围如果加了unsigned,则最大值翻倍,如tinyint unsigned的取值范围为(0~256)。int(m)里的m是表示SELECT查询结果集中的显示宽度,并不影响实际的取值范围,没有影响到显示的宽度,不知道这个m有什么用。
EXPLAIN 工具能用于获取查询执行计划,即分析 MySQL 如何执行一个 SQL 语句。我们可以通过使用EXPLAIN 去模拟优化器执行 SQL 语句,从而分析 SQL 语句有没有使用索引、是否采用全表扫描方式、判断能否更进一步优化等。我们可以根据EXPLAIN 输出的数据来分析如何优化查询语句,提升查询语句的性能瓶颈。
MySQL的査询优化器会通过两个API来了解存储引擎的索引值的分布信息,以决定如何使用索引。第一个API是 records_in_range(),通过向存储引擎传入两个边界值获取在这个范围大概有多少条记录。对于某些存储引擎,该接口返回精确值,例如MyISAM;但对于另一些存储引擎则是一个估算值,例如 InnoDB。 第二个API是info(),该接口返回各种类型的数据,包括索引的基数(每个键值有多少条记录)。 如果存储引擎向优化器提供的扫描行数信息是不准确的数据,或者执行计划本身太复杂以致无法准确地获取各个阶段匹配的行数,那么优化器会使用索引统计信息来估算扫描行数。 MySQL优化器使用的是基于成本的模型,而衡量成本的主要指标就是一个查询需要扫描多少行。如果表没有统计信息,或者统计信息不准确,优化器就很有可能做出错误的决定。可以通过运行ANALYZE TABLE来重新生成统计信息解决这个问题。 每种存储引擎实现索引统计信息的方式不同,所以需要进行ANALYZE TABLE的频率也因不同的引擎而不同,每次运行的成本也不同:
前两天同事提了一个问题,MySQL 5.7中给某张表字段增加一个单键值索引,提示了如下错误,
从Innodb存储引擎的逻辑存储结构来看,所有数据都被逻辑的放在一个表空间(tablespace)中,默认情况下,所有的数据都放在一个表空间中,当然也可以设置每张表单独占用一个表空间,通过innodb_file_per_table来开启。
结构化数据:也称作行数据,是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。指具有固定格式或有限长度的数据,如数据库,元数据等。
平时我们要优化 mysql 查询效率的时候,最常见的就是给表加上合适的索引了,那今天就来聊聊为什么加了索引就快了呢。
http://blog.csdn.net/yueguanghaidao/article/details/49638261
取值范围如果加了unsigned,则最大值翻倍,如tinyint unsigned的取值范围为(0~256)。
1.列表 1)创建列表 数组:存储同一种数据类型的集合 scores=[12,13,14] 列表:(打了激素的数组):可以存储任意数据类型的集合
索引合并是MySQL查询优化器在处理复杂查询条件时使用的一种技术。简单来说,当WHERE子句中有多个条件,并且每个条件都可以利用不同的索引时,优化器会考虑将这些索引的扫描结果合并,从而得到最终的结果集。
分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
学习 SQL 的时候,大家肯定第一个先学到的就是 select 查询语句了,比如下面这句查询语句:
要解释这个问题,其实不单单要从数据结构的角度出发,还要考虑磁盘 I/O 操作次数,因为 MySQL 的数据是存储在磁盘中的嘛。
转载自 http://blog.csdn.net/tiantang_1986/article/details/76890178
看完了上面B树和B+树,也可以总结出他们的区别。B+树也就是B树的升级版,对原本的B树做出的一些升级。
注:定点数以字符串形式存储,对精度要求高时使用decimal较好;尽量避免对浮点数进行减法和比较运算。
回答干脆利索,16K呗,我想这是大多数人的第一个反应和回答,这个回答没有毛病。但这16k里面到底有多少是你表中存储的那些实实在在的数据 ??
网名 bisal ,具有十年以上的应用运维工作经验,目前主要从事数据库应用研发能力提升方面的工作,Oracle ACE ,拥有 Oracle OCM & OCP 、EXIN DevOps Master 、SCJP 等国际认证,国内首批 Oracle YEP 成员,OCMU 成员,《DevOps 最佳实践》中文译者之一,CSDN & ITPub 专家博主,长期坚持分享技术文章,多次在线上和线下分享技术主题。
ES 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
优化目标 1.减少 IO 次数 IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑,当然,也是收效最明显的优化手段。 2.降低 CPU 计算 除了 IO 瓶颈之外,SQL优化中需要考虑的就是 CPU 运算量的优化了。order by, group by,distinct … 都是消耗 CPU 的大户(这些操作基本上都是 CPU 处理内存中的数据比较运算)。当我们的 IO 优化做到一定
学会自定义表中每一个字段(列)的数据类型,对学习SQL数据库以及性能调优有着很大的帮助!
最近在做mysql的数据库优化以及对sql语句优化的指导,写了一点文档,这个大家共勉一下!
mappings有点类似我们定义 MySQL的 数据库表结构的时候,需要指定每个字段的名字,其数据类型一样。当然,这个定义过程,也指明了这个表结构一共含有多少个字段了。对于ES而言,就相当于指定了一个document有多少field,每个field的数据类型,注意,这个比MySQL定义表过程,还多了一个有用的操作,就是指定每个字段可用的分析器(analyzer). 当然,不指定的话,就是采用默认的standard analyzer,当然你也可以指定某个字段不需要分析器(not_analyzed).
前面文章我们介绍过一些常用数据类型的用法,比如 int、char、varchar 等。一直没详细介绍过 blob 及 text 类型,虽然这两类数据类型不太常用,但在某些场景下还是会用到的。本篇文章将主要介绍 blob 及 text 数据类型的相关知识。
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行,还需要考虑每次读入数据页的IO开销。而如果采取索引,则可以根据索引指向的页以及记录在页中的位置,迅速地读取目标页进而获取目标记录。
当MySql的连接数据达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log。
前面我写了几篇关于 mysql 索引的文章,索引是 mysql 非常重要的一部分。你也可能经常会看到一些关于 mysql 军规、mysql 查询优化的文章,其实这些操作的背后都是基于一定的原理的,你要想明白这些原理,首先就得知道 mysql 底层的一些东西。
mysql 5.7中有很多新的特性,但平时可能很少用到,这里列举2个实用的功能:虚拟列及json字段类型
B+树是一种在非叶子节点存放排序好的索引而在叶子节点存放数据的数据结构,值得注意的是,在叶子节点中,存储的并非只是一行表数据,而是以页为单位存储,一个页可以包含多行表记录。非叶子节点存放的是索引键值和页指针。
领取专属 10元无门槛券
手把手带您无忧上云