前面其实写了好几篇关于 mysql 索引的文章了,文章中有具体的实例和 sql 语句,这篇文章我想再用纯大白话讲讲 mysql 索引,文中不涉及具体 sql 。
不知道你有没有这种感觉,那些所谓的数据结构和算法,在日常开发工作中很少用到或者几乎不曾用到,可能只是在每次换工作准备面试的时候才会捡起来学习学习。
ClickHouse应用于OLAP(在线分析处理)领域,具体来说满足如下特点使用此技术比较合适:
一般情况下,我们会在一个索引上较多的使用等值查询或者范围查询,此时索引大多可以帮助我们极快的查询出我们需要的数据。
有读者在 mysql索引为啥要选择B+树 (上) 上篇文章中留言总结了选择 B+ 树的原因,大体上说对了,今天我们再一起来看看具体的原因。
这段时间在维护产品的搜索功能,每次在管理台看到 elasticsearch 这么高效的查询效率我都很好奇他是如何做到的。
这个事情要回溯到曾经背八股文的时候了,想必大家在背八股文的时候对于事务隔离级别都已经背得滚瓜烂熟了,一般在说隔离级别的时候,都顺带会提到mysql的innodb的RR隔离级别,由于他与众不同的实现方式,通常会有下面的一些描述:
注意关键字where,where后面跟上一个或者多个条件,条件是对前面数据的过滤,只有满足where后面条件的数据才会被返回。
MySQL是一种结构化查询语言,用于管理关系型数据库系统。在大型数据库中,索引是优化数据访问和查询速度的重要工具。本文将围绕MySQL索引优化模块,介绍索引结构、索引建立依据以及索引最终效果等方面的内容。
本文实例讲述了tp5(thinkPHP5框架)时间查询操作。分享给大家供大家参考,具体如下:
讨论树状数组前我们先来思考一个问题,有一个长度为 n 的数组,有两种操作:修改某个数的值和输出下标为 i 到 j 的每个数的和。
MySQL + HBase是我们日常应用中常用的两个数据库,分别解决应用的在线事务问题和大数据场景的海量存储问题。
在告警监控场景中,值守人员经常需要按时间段查询告警列表或其它相关信息。尤其在需要进行实时分析的自动化告警评估和推荐业务中,由于需要对时间段内全部告警进行评估,如果每次都要从数据库中加载完整数据,会产生很高的I/O负载,响应速度也不尽如人意。
来源:https://blog.csdn.net/weixin_41605937/article/details/110933984
来源:blog.csdn.net/weixin_41605937/ article/details/110933984
了解一个产品,从性能测试下手是最好的方法,这里就是针对金融级MySQL解决方案RadonDB中的核心组件Radon进行一次性能测试。
RDBMS(Relaction DataBase Mangement System):MySQL、SQL Server、IBM DB2、Oracle
在项目开发中,一些业务表字段经常使用日期和时间类型,而且后续还会牵涉到这类字段的查询。关于日期及时间的查询等各类需求也很多,本篇文章简单讲讲日期及时间字段的规范化查询方法。
数据结构是计算机科学中的一个重要概念,它描述了数据之间的组织方式和关系,以及对这些数据的访问和操作。常见的数据结构有:数组、链表、栈、队列、哈希表、树、堆和图。
说二叉查找树是一种查找效率很高的数据结构,它有三个特点: (1)每一个节点最多仅仅有两个子树。 (2)左子树都为小于父节点的值,右子树都为大于父节点的值。 (3)在n个节点中找到目标值,一般仅仅须要log(n)次比較。 二叉查找树的结构不适合数据库,由于他的查找效率与层数有关。越处在下层的数据,就须要越多次的比較。极端的情况下,n个数据须要n次比較才干找到目标值。对于数据库来说,每进入一层,就要从硬盘读取一次数据,这很致命,由于硬盘的读取时间远远大于数据处理时间,数据库读取硬盘的次数越少越好。 B树是对二叉查找树的改进。它的设计思想是,将相关数据尽量集中在一起,以便一次读取多个数据,降低硬盘操作次数。
线段树是一种专用于处理区间查询的数据结构,在解决范围内的查询和更新操作时具有高效性能。在本文中,我们将深入讲解Python中的线段树,包括线段树的基本概念、构建、查询和更新操作,并使用代码示例演示线段树的使用。
有个学⽣表,包含(学⽣id,年龄,姓名),当我们需要查询姓“张”的学⽣的时候,如何
首先最容易想到的方法就是先求出前缀和sum[i],然后区间[a,b]的和就可以直接通过sum[b]-sum[a-1]得到。
SQL(Struted Query Language): 结构化查询语言,是用来连接和操作RDBMS的标准计算机语言
以Col1为主键,则上图是一个MyISAM表的主索引(Primary key)示意
51Nod-1617-奇偶数组:ACM模板题解。首先给定一个1~n序列,进行一系列变换直到没有变化,然后对该序列进行区间查询。通过奇偶划分,将原始序列转换成两个等差数列。在线段树的基础上,使用递归的方法实现区间查询。
树状数组(BIT, Binary Indexed Tree)是简洁优美的数据结构,它能在很少的代码量下支持单点修改和区间查询,我们先以 a[] {1, 2, 3, 4, 5, 6} 数组为例建立树状数组看一下树状数组的样子:
树状数组(Binary Index Tree, BIT)也是很多OIer心中最简洁优美的数据结构之一。最简单的树状数组支持两种操作,时间复杂度均为 :
电商中:我们想查看某个用户所有的订单,或者想查看某个用户在某个时间段内所有的订单,此时我们需要对订单表数据进行筛选,按照用户、时间进行过滤,得到我们期望的结果。
数据库作为项目中必不可少且运行速度相对较慢的一环,尤其是在大数据量下保证其更高的性能、更稳定的性能是每个后端程序员必备的技能。MySQL在执行查询语句时,会通过IO扫描磁盘,遍历数据表中的每一条数据,时间复杂度为O(N),当数据量达到百万级别时,查询的速度会极慢,严重影响用户体验。
有序数组在等值查询和范围查询场景中的性能就都非常优秀 , 但是如果插入 删除操作成本高,适合数据不变化或只新增.
当我们使用汉语字典查找某个字时,我们会先通过拼音目录查到那个字所在的页码,然后直接翻到字典的那一页,找到我们要查的字,通过拼音目录查找比我们拿起字典从头一页一页翻找要快的多,数据库索引也一样,索引就像书的目录,通过索引能极大提高数据查询的效率。
其中时间时间区间查询 被坑了一把。后来直接改成字符串格式的了(yyyy-MM-dd HH:mm:ss)。
能不用空格表示OR或者AND就不用空格表示,因为要么全用要么全部不用,否则会因为解析搜索同级的时候,若出现空格和OR,会冲突覆盖意义,虽不会报错,但是,得不到自己要的结果。
最近,Twitter Cache团队的工程师Yu Yao在Youtube发表了一段演讲,介绍了Twitter如何使用Redis提高系统可伸缩性。High Scalability对这段演讲进行了整理和总结。 Yu Yao首先解释了为什么Twitter Cache团队选择了Redis,而不是Memcache。原因在于Twitter对网络带宽以及长通用前缀(Long Common Prefix)在使用效率上的考虑。Twitter主要将Redis用于timeline服务,而针对这方面的功能,Redis的表现要优于M
V5.1.23+版本开始,支持findOrEmpty方法,当查询不存在的时候返回空数组而不是Null。
在计算机科学和算法领域,区间操作问题是一类常见且重要的问题,它们涉及到在一维数据结构中执行查询和更新操作。线段树是一种用于解决这类问题的强大数据结构。
首先我们要了解mysql查询优化器的执行效率,大约有10个,重点几个主要就是const,ref,range ,index,all。Const效率是最块的,成本可以忽略不计,主要通过主键或者唯一值查询的sql。还有比const更快的system,这种时候必须是mysql优化器内部精确计算查询成本,所以system不适用于innoDB,只适用于myISAM。Ref代表用的是索引b+tree查询的时候,比如用连接查询的时候,连接查询的条件是索引唯一值,这时候还分为eq-ref,er-ef是当被驱动表查询的是主键或者唯一二级索引的时候,这时候就是显示eq-ref。当连接表的条件是普通索引查询的时候,这时候显示就是ref,range顾名思义就是索引区间查询的时候,index代表查询覆盖索引的时候,all就是放弃索引全盘扫描了。
(注:由于线段树的每个节点代表一个区间,以下叙述中不区分节点和区间,只是根据语境需要,选择合适的词) 线段树本质上是维护下标为1,2,…,n的n个按顺序排列的数的信息,所以,其实是“点树”,是维护n的点的信息,至于每个点的数据的含义可以有很多, 在对线段操作的线段树中,每个点代表一条线段,在用线段树维护数列信息的时候,每个点代表一个数,但本质上都是每个点代表一个数。以下,在讨论线段树的时候,区间[L,R]指的是下标从L到R的这(R-L+1)个数,而不是指一条连续的线段。只是有时候这些数代表实际上一条线段的统计结果而已。
线段树是算法竞赛中常用的用来维护 区间信息 的数据结构。线段树可以在 O(\log_{2}{N}) 的时间复杂度内实现单点修改、区间修改、区间查询等操作。
网上经常能看到一些文章总结在 mysql 中不能命中索引的各种情况,其中有一种说法就是指使用了 or 的语句都不能命中索引。
本文实例讲述了tp5.1 框架数据库高级查询技巧。分享给大家供大家参考,具体如下:
有这样一类问题,给定一个数列,让你求某段区间内和。如果对某个值或某段区间内的值进行修改后,如何快速的求和。如果线性执行更新操作或求和操作,无疑时间复杂度太大了。 那么借助分治的思想,在执行更新区间的操作时,把它转化为几段区间的更新,同样求和操作时,也通过维护分段区间的和来达到快速求区间和的问题。线段树就是利用二叉树这种数据结构,来维护区间信息的一种数据结构。
字符串式即是原生式,数组式查询语句因书写方式与特定字符的原因比较复杂,下面为大家例出了常用的ThinkPHP数组式查询语句的使用方法
字符串式即是原生式,数组式查询语句因书写方式与特定字符的原因比较复杂,下面为大家例出了常用的ThinkPHP数组式查询语句的使用办法
有一份航班预订表 bookings,表中第 条预订记录 意味着在从 到 (包含 和 )的 每个航班 上预订了 个座位。
当一个数据库被创建之后,随着时间的推移和业务量的增加,数据库中的表以及表中的数据量都会越来越多,就有可能会出现两种弊端: (1)数据库的存储资源是有限的,其负载能力也是有限的,数据的大量积累肯定会导致其处理数据的能力下降; (2)数据量越多,那么对数据的增删改查等操作的开销也会越来越大; 所以,当出现如上两种情况,分库分表势在必行。
认识索引是什么东西非常关键,一个非常恰当的比喻就是书的目录页与书的正文内容之间的关系,为了方便查找书中的内容,通过对内容建立索引形成目录。因此,首先你要明白的一点就是,索引它也是一个文件,它是要占据物理空间的。
领取专属 10元无门槛券
手把手带您无忧上云