我们都知道在 Mysql 中,索引是非常重要的内容,因为他对我们的查询会有非常大的帮助,所以,我们今天就来看看这个 Mysql 的索引。
认识这个小工具纯属偶然,是在和同事讨论一个问题的时候,我随口问了句,还有啥好工具推荐推荐,他推荐了两个: Typora和Everything.
================================================================
来自:blog.csdn.net/u013142781/article/details/51706790
注:上面提到的B树索引并没有指出是B-Tree和B+Tree索引,但是B-树和B+树的定义是有区别的。
‘’MYSQL一直了解得都不多,之前写sql准备提交生产环境之前的时候,老员工帮我检查了下sql,让修改了一下存储引擎,当时我使用的是Myisam,后面改成InnoDB了。为什么要改成这样,之前都没有听过存储引擎,于是网上查了一下。
正确的创建合适的索引,是提升数据库查询性能的基础。在正式讲解之前,对后面举例中使用的表结构先简单看一下:
来源:https://blog.csdn.net/b_x_p/article/details/86434387
mysql索引的本质是什么 1、其实就相当于目录,是帮助mysql高效获取数据的数据结构。 2、我们都知道,在mysql中数据最终存储在硬盘中的,访问磁盘相当于是IO操作。 3、在mysql中有一个page的概念,一个表都被分为若干个页面(page),每个页面(page)就是树中的一个节点,每次mysql就会取出一个页面(page)也就是一个节点的数据,而mysql默认一个页面(page)保存16k的数据。 4、页面(page)的大小会直接影响到数据的存储和检索效率,因此我们也可以实际业务需求和硬件条件进行评估和调整,合理设置mysql的页面(page)大小,以达到最佳的性能表现。
在刚开始学习php的时候,就对搜索过后的关键字描红感到好奇,但是这几天在巩固php基础的时候,就发现原来这样的效果实现并不难。按照惯例,首先给大家看看效果图吧。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
之前有过一次面试,关于MySQL索引的原理及使用被面试官怼的体无完肤,立志要总结一番,然后一直没有时间(其实是懒……),准备好了吗?
最近工作上需要实现搜索功能,尝试了几种方案。虽然最终线上部署的还是最low的方案,但是中间的过程还是比较有意思的。业务上根据关键字查找内容。关键字的出处多来源于标题,文章描述等。主要实现方式有一些几种,各个方式各有利弊,需要权衡。
今天下午下班去吃饭,吃完饭坐电梯上三楼,竟然被困在电梯里面了,当时的感觉还是很刺激的,电梯上升着,突然就掉下来了,像跳楼机一样,突出一个刺激,索性只掉了一层。。。然后由于是下班时间,修电梯的师傅打车来公司,修了半个小时才修好的,我们3个DBA在电梯里面困了一个半小时。困在电梯里的时候,大家在开玩笑说,这个时候要是出个线上的故障,那不得了啊,公司的中流砥柱们都困在电梯里了,哈哈哈。
大家好,这里是 渗透攻击红队 的第 九 篇文章,本公众号会记录一些我学习红队攻击的复现笔记(由浅到深),笔记复现来源于《渗透攻击红队百科全书》出自于 亮神 ,每周一更
数据表类型(存储引擎) 数据库引擎用于存储、处理和保护数据的核心服务,利用数据库引擎可控制访问权限并快速处理事务,利用数据库引擎创建用于联机事务处理或联机分析处理数据的关系数据库,包括创建用于存储数据
关于Enumdb Enumdb是一款针对MySQL和MSSQL关系型数据库的安全渗透后利用工具,该工具主要针对关系型数据库设计,并支持暴力破解和后利用渗透测试。广大研究人员可以提供一个用户名或密码列表,该工具将会在每个主机中寻找能够匹配的有效凭证。默认配置下,Enumdb将会使用新发现的凭证信息,并通过对表或列名的关键字搜索来自动搜索敏感数据字段,最后将所有信息提取出来并写入到.csv或.xlsx输出文件中。 需要提取的数据行数、数据库/表黑名单和搜索的关键字都可以在enumdb/config.py文件中
使用频率最高的SQL语句应该就是select语句了,它的用途就是从一个或多个表中检索信息,使用select检索表数据必须给出至少两条信息:想选择什么,以及从什么地方选择
search命令是Metasploit框架中常用的命令,在日常使用中非常快速的查找模块或者漏洞
1、B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。
创建合适的索引是SQL性能调优中最重要的技术之一。在学习创建索引之前,要先了解MySql的架构细节,包括在硬盘上面如何组织的,索引和内存用法和操作方式,以及存储引擎的差异如何影响到索引的选择。
我们都知道,数据库索引可以帮助我们更加快速的找出符合的数据,但是如果不使用索引,Mysql则会从第一条开始查询,直到查询到符合的数据,这样也会导致一个问题:如果没有添加索引,表中数据很大则查询数据花费的时间更多。而这时候我们为字段添加一个索引,Mysql就会快速搜索数据,可以节省大量时间。MyISAM和InnoDB是最经常使用的两个存储引擎,MyISAM和InnoDB索引都是采用B+树的数据结构,那B树和B+树的区别是什么呢?
GitMAD是一个用于发现Github上的敏感信息和数据泄漏的工具。通过给定关键字或域,GitMAD便会搜索Github上托管的代码,以查找是否存在匹配项。一旦找到了匹配项,GitMAD将克隆存储库并在文件中搜索一系列可配置的正则表达式。然后,GitMAD会获取这些结果,并将它们插入到数据库中供后续的查看使用。这些结果也可作为邮件警报发送。另外,GitMAD将持续运行以发现与输入关键字匹配的新存储库。
点击上方蓝色字体,选择“设为星标” 回复”学习资料“获取学习宝典 我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多,例如,搜索引擎需要根基用户数据的关键字进行全文查找,电子商务网站需要根据用户的查询条件,在可能需要在商品的详细介绍中进行查找,这些都不是B+树索引能很好完成的工作。 通过数值比较,范围过滤等就可以完成绝大多数我们需要的查询了。但是,如果希望通过关键字的匹配来进行查询过滤,那么就需要基于相似度的查询,而不是原来的精确数
GoogleHackingGoogleHacking常用语法(冒号后面不用加空格intext:(仅针对Google有效) 把网页中的正文内容中的某个字符作为搜索的条件intitle: 把网页标题中的某个字符作为搜索的条件cache: 搜索搜索引擎里关于某些内容的缓存,可能会在过期内容中发现有价值的信息filetype/ext: 指定一个格式类型的文件作为搜索对象inurl: 搜索包含指定字符的URLsite: 在指定的(域名)站点搜索相关内容GoogleHacking注意事项引号 '' " 把关键字打上引号
数据库引擎用于存储、处理和保护数据的核心服务,利用数据库引擎可控制访问权限并快速处理事务,利用数据库引擎创建用于联机事务处理或联机分析处理数据的关系数据库,包括创建用于存储数据的表和用于查看、管理、保护数据安全的数据库对象(索引、视图、存储过程)。
我们熟知常用数据库MySQL MongoDB HBase等底层存储都用了各种树结构,如B树LSM树,不过为什么要用这些结构呢?
去搜错误码(可以看看日志文件里有没有),不搜不知道,一搜真香,网上大概率会有对应问题的解决教程
大家知道 select * from t where col = 88 这么一条 SQL 语句如果不走索引进行查找的话,正常地查就是
我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多。
点击关注公众号,Java干货及时送达 作者:沸羊羊 来源:juejin.cn/post/6989871497040887845 前言 我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多,例如,搜索引擎需要根基用户数据的关键字进行全文查找,电子商务网站需要根据用户的查询条件,在可能需要在商品的详细介绍中进行查找,这些都不是B+树索引能很好完成的工作。 通过数值比较,范围过滤等就可以完成绝大多数我们需要的查询了。但是,如果希望通过关键字的匹配
索引能极大的减少存储引擎需要扫描的数据量 索引可以把随机IO变成顺序IO(索引指向(左小右大)) 索引可以帮助我们在进行分组、排序等操作时,避免使用临时表
假设此时用普通二叉树记录 id 索引列,我们在每插入一行记录的同时还要维护二叉树索引字段。
平衡二叉树的查找效率是非常高的,并可以通过降低树的深度来提高查找的效率。但是当数据量非常大,树的存储的元素数量是有限的,这样会导致二叉查找树结构由于树的深度过大而造成磁盘 I/O 读写过于频繁,进而导致查询效率低下。
MyISAM和InnoDB是MySQL最常用的两个存储引擎,本文将进行详尽的介绍和对比。对于MySQL其余几种存储引擎,请读者自行搜索学习。
全文检索在 MySQL 中就是一个 FULLTEXT 类型索引。FULLTEXT 索引用于 MyISAM 表,可以在 CREATE TABLE 时或之后使用 ALTER TABLE 或 CREATE INDEX 在 CHAR、 VARCHAR 或 TEXT 列上创建 对于大的数据库,将数据装载到一个没有 FULLTEXT 索引的表中,然后再使用 ALTER TABLE (或 CREATE INDEX) 创建索引,这将是非常快的。将数据装载到一个已经有 FULLTEXT 索引的表中,将是非常慢的。
对于这项规定,很多研发小伙伴不理解。本文就来深入简出地分析MySQL索引设计背后的数据结构和算法,从而可以帮你释疑如下问题:
我们用一个例子来逐渐引出啥是索引。话说大老板东哥有一天想体验一下快递小哥的生活,就去自家快递公司准备干活了,一进仓库看到一地的快递,兴冲冲的就问旁边的快递小哥 “这么多快递,我要找一个人的快递怎么办?”。快递小哥说 “你可以一件件找,直到找到你要的那件快递”,东哥一听脸顿时黑了 “淦!上十万件快递你要我一件件找,是想累死我,然后继承我的白条吗?” 说完一甩手扭头就会豪宅去了。 第二天,快递公司老板去找东哥说 “领导,我们已经改进了,再去指导指导呗”。东哥一听,哎呀!动作挺快,然后就又到快递公司了,问 “你们想出什么办法了吗”。快递小哥连忙回答 “我们给所有的快递都编了号,做了一个表格,只要从表格中找到编号就可以找到快递了”,东哥心想,我从上十万的名单里找出了编码,还要去上十万的快递里扒出快递,还是太累了就说 “我时间有限有没有更快的办法”。 快递公司老板一听,这还得了,大 BOOS 不满意了,得亏有备用方案,就说 “领导,我们还有个方案,我们做个快递柜,1 ~ 10 号快递放 0 号,10 ~ 20 放 1 号,依次类推,只要找到了快递编码,很快就可以找到快递了”。东哥一听,不错哈!这么干就快多了,但是我还要从上十万的表格中找出编码,难受啊!一脸的难受。快递公司老板冷汗直流,这是嫌找编码满了啊,该怎么办,BOOS 一怒,回家种地。这时一个程序员站住来说 “领导,我们还有个方案,我们把表格进行优化,按照姓名首字母来分类,就可以很快的找到指定的名字和编码”。东哥大喜,升职加薪! 从上面的例子可以推出,如果没有索引,必须遍历整个表,直到指定快递被找到为止;有了索引之后,即可在索引中查找。由于索引是经过某种算法优化过的,因而查找次数要少的多。可见,索引是用来定位的。官方来讲就是:索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。
很多个人、公司和机构把一些敏感信息暴露在了互联网上而不自知。一些Hacker就利用搜索引擎来获取这些敏感信息,从而进行一些攻击。其中最流行的方式是使用Google Dorks,从Google搜索引擎来搜索网站信息、漏洞,甚至是已被挂马的后台Webshell。
MySQL 的帮助信息重要吗?不太重要!有用吗?有!就好比你在家洗澡的时候,突然有人不停地按你家的门铃,能把你憋出心脏病来,嘿嘿。
在 WHERE 关键词后可以有多个查询条件,这样能够使查询结果更加精确。多个查询条件时用逻辑运算符 AND(&&)、OR(||)或 XOR 隔开。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
当我们的应用程序访问较少时(例如在项目初期阶段),直接进行项目编码就可以解决大多数问题。项目中的搜索功能也是如此,没必要在一开始就引入完整的第三方类库进行搜索功能支持。大多数情况下使用 Eloquent 的查询功能就可以完成基本的搜索处理。
Mysql数据库中的常见索引有多种方式,例如Hash索引,B-树索引,B+树索引,但是为啥mysql中默认是采用B+树索引索引呢?下面对这三种索引学习总结一下。B+树到底有啥优势? B-树
在本文中,我们将讨论一个linux命令,该命令在Linux中进行搜索非常有用。那就是“ grep”命令。我们可以使用grep搜索文件中的文本模式,另一方面,可以使用find命令在linux OS中搜索文件。除此之外,我们还可以使用grep命令过滤搜索结果以捕获特定的文本字符串、单词或数字。这个命令对于Linux操作系统中的日常任务非常有用。
本文同步至个人博客 需要掌握的 Laravel Eloquent 搜索技术 ,转载请注明出处。
悲观锁的特点是先获取锁,再进行业务操作,即“悲观”的认为获取锁是非常有可能失败的,因此要先确保获取锁成功再进行业务操作。通常所说的“一锁二查三更新”即指的是使用悲观锁。通常来讲在数据库上的悲观锁需要数据库本身提供支持,即通过常用的select … for update操作来实现悲观锁。当数据库执行select for update时会获取被select中的数据行的行锁,因此其他并发执行的select for update如果试图选中同一行则会发生排斥(需要等待行锁被释放),因此达到锁的效果。select for update获取的行锁会在当前事务结束时自动释放,因此必须在事务中使用。
领取专属 10元无门槛券
手把手带您无忧上云