上一小节提到了数据备份是指将数据库中数据存储的相关文件进行拷贝,而这些文件有很多,所以让我们来简单认识下MySQL中与数据相关的文件。
分页查询是MySQL特有的,一般其他数据库是没有的。分页查询可以从表里取一个范围的行,例如0到50行的的数据,30到100行的数据。
原文:http://www.enmotech.com/web/detail/1/739/1.html
在 MySQL 中, InnoDB存储引擎长期以来一直支持表空间的概念。在 MySQL 8.0 中,同一个分区表的所有分区必须使用相同的存储引擎。但是,也可以为同一 MySQL 服务器甚至同一数据库中的不同分区表使用不同的存储引擎。
简单来说,微服务架构就是把传统的一个单体应用以一套"小服务"的方式进行开发,这些"小服务"可以运行在不同机器上,它们在自己的进程中运行,"小服务"之间可以通过像是 HTTP API 这样的轻量级的机制进行通信,这些"小服务"紧紧围绕项目的业务需求开发,同时,它们是以业务边界进行划分成独立的微服务。这些微服务看似独立又像是一个整体,构成了一个业务集群。
最近一直在考虑oracle数据自动备份到本地的问题,也找机会当面向大牛请教过,得到了一堆关于DG、GG、RAC、DBLINK、ARCHLOG等方面的建议,还有个哥们直接建议我用redis实现。 但因为受服务器配置和网络带宽的限制,以上方法实现起来较繁琐,且有一定的学习成本(毕竟新技术发展太快,早就跟不上潮流了),而且nosql实现起来可能还需要进行二次开发来实现数据库的读写。 磨蹭了大半个月,终于决定还是选择自己最熟悉的批处理来实现异步备份到本地 思路如上图示: 数据库改造,将大表按天建立表分区 服务端
线上有个MySQL 5.7版本的实例,从服务器延迟了3万多秒,而且延迟看起来好像还在加剧。
墨墨导读:本文以一个实际的项目应用为例,层层向大家剖析如何进行数据库的优化。项目背景是企业级的统一消息处理平台,客户数据在5千万加,每分钟处理消息流水1千万,每天消息流水1亿左右。 移动互联网时代,海量的用户数据每天都在产生,基于用户使用数据等这样的分析,都需要依靠数据统计和分析,当数据量小时,数据库方面的优化显得不太重要,一旦数据量越来越大,系统响应会变慢,TPS直线下降,直至服务不可用。
通过这个 Node.js 和 MySQL 示例项目,我们将看看如何有效地处理 数十亿行 占用 数百GB 存储空间的数据。
列表分区能把几种不同的数据整合在一个分区里,列表分区明确指定了根据某字段的某个具体值进行分区,而不是像范围分区那样根据字段的值范围来划分的。
https://www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison
通俗地讲表分区是将一大表,根据条件分割成若干个小表。mysql5.1开始支持数据表分区了。 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分区。当然也可根据其他的条件分区。
在我们日常处理海量数据的过程中,如何有效管理和优化数据库一直是一个既重要又具有挑战性的问题。
MySQL近两年一直稳居第二,随时有可能超过Oracle计晋升为第一名,因为MySQL的性能一直在被优化,同时安全机制也是逐渐成熟,更重要的是开源免费的。
Q 题目 MySQL支持哪几类分区表? A 答案 表分区是指根据一定规则,将数据库中的一张表分解成多个更小的,容易管理的部分。从逻辑上看,只有一张表,但是底层却是由多个物理分区组成,每个分区都是一个独立的对象。分区有利于管理大表,体现了“分而治之”的理念。一个表最多支持1024个分区。 在MySQL 5.6.1之前可以通过命令“show variables like '%have_partitioning%'”来查看MySQL是否支持分区。若have_partintioning的值为YES,则表示支持分
第七章 MySQL的高级特性 分区操作时,可以只针对某个区进行操作,而且在底层文件系统中的表现,分区是多个表文件,可以高效地利用多个硬件设备。 如果分区字段中有主键或者唯一索引的列,那么所有的主键和唯一索引列都必须包含进来。 当操作分区表的时候,优化器会判断能否过滤部分分区。 Mysql的分区支持范围,键值,哈希和列表分区。 当数据量超大的时候,B-Tree索引就无法起作用了,除非是索引覆盖查询,否则在回表查数据的时候,会产生大量的随机IO,导致超长的响应时间,而且维护索引的代价非常高。 分离热点能有效利用
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快。这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈。
首先采用Mysql存储千亿级的数据,确实是一项非常大的挑战。Mysql单表确实可以存储10亿级的数据,只是这个时候性能非常差,项目中大量的实验证明,Mysql单表容量在500万左右,性能处于最佳状态。
Cannot delete or update a parent row: aforeign key constraint fails
根据用户定义的表现式回归值进行选择的分区,该表现式的使用将插入表中的这些行列值进行计算。
作业帮是一家以科技为载体的在线教育公司。目前旗下拥有工具类产品作业帮、作业帮口算,K12 直播课产品作业帮直播课,素质教育产品小鹿编程、小鹿写字、小鹿美术等,以及喵喵机等智能学习硬件。作业帮教研中台、教学中台、辅导运营中台、大数据中台等数个业务系统,持续赋能更多素质教育产品,不断为用户带来更好的学习和使用体验。其中大数据中台作为基础系统中台,主要负责建设公司级数仓,向各个产品线提供面向业务主题的数据信息,如留存率、到课率、活跃人数等,提高运营决策效率和质量。
mysql表分区--RANGE分区,属于横向分区。举例说,假如有100条数据,分成十份,前10条数据放到第一个分区,第二个10条数据放到第二个分区,依此类推。横向分区,并不会改变表的结构。
日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。
在使用hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具。
在Oracle 11gR2中,引入了SYSASM特权用来执行与ASM相关的特定操作。同样地,在Oracle 12c中引入了3个新的系统用户SYSBACKUP、SYSDG和SYSKM,其中,SYSKM可以执行与透明数据加密密钥(Transparent Data Encryption keystore)相关的操作,SYSDG可以在DGMGRL或命令行接口里执行与DG(Data Guard)相关的操作,而SYSBACKUP特权用来在RMAN或SQL*Plus中执行备份和恢复命令。
快两年没写过业务代码了…… 今天帮一个研发团队优化了一下数据库表的查询性能。使用的是表分区。 简单记录了一下步骤,方便直接用:
1. 什么是表分区 2. 分区的两种方式 2.1 水平切分 2.2 垂直切分 3. 为什么需要表分区 4. 分区实践 4.1 RANGE 分区 4.2 LIST 分区 4.3 HASH 分区 4.4 KEY 分区 4.5 COLUMNS 分区 5. 常见分区命令 6. 小结 松哥之前写过文章跟大家介绍过用 MyCat 实现 MySQL 的分库分表,不知道有没有小伙伴研究过,MySQL 其实也自带了分区功能,我们可以创建一个带有分区的表,而且不需要借助任何外部工具,今天我们就一起来看看。 1. 什么是表分区
当我们业务数据库表中的数据越来越多,如果你也和我遇到了以下类似场景,那让我们一起来解决这个问题
分区就是将表的数据按照特定规则存放在不同的区域,也就是将表的数据文件分割成多个小块,在查询数据的时候,只要知道数据数据存储在哪些区域,然后直接在对应的区域进行查询,不需要对表数据进行全部的查询,提高查询的性能。同时,如果表数据特别大,一个磁盘磁盘放不下时,我们也可以将数据分配到不同的磁盘去,解决存储瓶颈的问题,利用多个磁盘,也能够提高磁盘的IO效率,提高数据库的性能。常见的分区类型有:Range分区、List分区、Hash分区、Key分区:
本文主要介绍了zabbix进行数据库表分区的方法: 在系统监控中,zabbix已经代替了nagios+cacti,zabbix以其良好的图形展示和高度自定义赢得了很多运维人员的喜爱。但是由于在工作中,zabbix跑的时间过长(我们公司跑了将近3年),web页面经常卡顿,监控数据有时很难插入数据库,且数据库队列经常性卡死,经过查看,发现mysql的数据量高达83G,急需瘦身,于是有了此文。 步骤: 修改表结构: use zabbix; Alter table history_text drop
1、list分区的每个分区必须明确定义,基于枚举出的值列表分区,通过使用PARTITION BY LIST(expr)来实现。
局部索引等价于我们通常说的本地索引,与主表的数据结构保持一对一的关系。局部索引没有单独分区的概念,一般来讲,主表的分区方式决定局部索引的分区方式,也就是说假设主表有10个分区,那么对于每个分区来讲,都有一个对应的局部索引。
D(持久性),一旦事务完成,无论发生什么系统错误,它的结果都不会受到影响,事务的结果被写到持久化存储器中。底层实现原理是:redo log机制去实现的,mysql 的数据是存放在这个磁盘上的,但是每次去读数据都需要通过这个磁盘io,效率就很低,使用 innodb 提供了一个缓存 buffer,这个 buffer 中包含了磁盘部分数据页的一个映射,作为访问数据库的一个缓冲,从数据库读取一个数据,就会先从这个 buffer 中获取,如果 buffer 中没有,就从这个磁盘中获取,读取完再放到这个 buffer 缓冲中,当数据库写入数据的时候,也会首先向这个 buffer 中写入数据,定期将 buffer 中的数据刷新到磁盘中,进行持久化的一个操作。如果 buffer 中的数据还没来得及同步到这个磁盘上,这个时候 MySQL 宕机了,buffer 里面的数据就会丢失,造成数据丢失的情况,持久性就无法保证了。使用 redolog 解决这个问题,当数据库的数据要进行新增或者是修改的时候,除了修改这个 buffer 中的数据,还会把这次的操作写入到这个 redolog 中,如果 msyql 宕机了,就可以通过 redolog 去恢复数据,redolog 是预写式日志,会先将所有的修改写入到日志里面,然后再更新到 buffer 里面,保证了这个数据不会丢失,保证了数据的持久性,redolog 属于记录修改的操作,主要为了提交或者恢复数据使用!讲完事务的四大特性,再来说下事务的隔离性,当多个线程都开启事务操作数据库中的数据时,数据库系统要能进行隔离操作,以保证各个线程获取数据的准确性,在介绍数据库提供的各种隔离级别之前,来说一下如果不考虑事务的隔离性,会发生的几种问题:第一个问题是脏读,在一个事务处理过程里读取了另一个未提交的事务中的数据。举个例子,公司发工资了,领导把四万块钱打到我的账号上,但是该事务并未提交,而我正好去查看账户,发现工资已经到账,是四万,非常高兴。可是不幸的是,领导发现发给我的工资金额不对,是三万五元,于是迅速修改金额,将事务提交,最后我实际的工资只有三万五元,我就白高兴一场。第二个问题是不可重复读,某个数据在一个事务范围内多次查询却返回了不同的结果,用大白话讲就是事务T1读取数据,事务T2立马修改了这个数据并且提交事务给数据库,事务T1再次读取这个数据就得到了不同的结果,发生了不可重复读。举个例子,我拿着工资卡去消费,系统读取到卡里确实有一百块钱,这个时候我的女朋友刚好用我的工资卡在网上转账,把我工资卡的一百块钱转到另一账户,并在我之前提交了事务,当我扣款时,系统检查到我的工资卡已经没有钱,扣款失败,廖志伟十分纳闷,明明卡里有钱的。第三个问题是幻读,事务T1对一个表的数据做了从“1”修改成“2”的操作,这时事务T2又对这个表插入了一条数据,而这个数据的值还是为“1”并且提交给数据库,操作事务T1的用户再查看刚刚修改的数据,会发现还有一行没有修改。举个例子,当我拿着工资卡去消费时,一旦系统开始读取工资卡信息,这个时候事务开始,我的女朋友就不可能对该记录进行修改,也就是我的女朋友不能在这个时候转账。这就避免了不可重复读。假设我的女朋友在银行部门工作,她时常通过银行内部系统查看我的工资卡消费记录。有一天,她正在查询到我当月信用卡的总消费金额(select sum(amount) from transaction where month = 本月)为80元,而我此时正好在外面胡吃海喝后在收银台买单,消费1000元,即新增了一条1000元的消费记录(insert transaction … ),并提交了事务,随后我的女朋友把我当月工资卡消费的明细打印到A4纸上,却发现消费总额为1080元,我女朋友很诧异,以为出现了幻觉,幻读就这样产生了。
最近在做mysql的数据库优化以及对sql语句优化的指导,写了一点文档,这个大家共勉一下!
3.1.2 表分区,索引分区 (优化①粗略的进行了表分区,优化②为精确数据分区)
MySQL表分区是一种数据库管理技术,用于将大型表拆分成更小、更可管理的分区(子表)。每个分区可以独立进行维护、备份和查询,从而提高数据库性能和管理效率。以下是详细介绍MySQL表分区的步骤和注意事项:
相当一部分大数据分析处理的原始数据来自关系型数据库,处理结果也存放在关系型数据库中。原因在于超过99%的软件系统采用传统的关系型数据库,大家对它们很熟悉,用起来得心应手。
Linux,Docker,MySQLCommunity8.0.31,InnoDB。
又是新的一年奋斗路的开启,相信有不少人农历新年之后,肯定会有所变动(跳槽加薪少不了)。所以,我把往期推送过的MySQL技术文章做了一个相关的整理,基础不好的可以从最基础的学习一遍,提高的也可以从中再提取深入一下。
MySQL 8.0在内存管理和性能优化方面做了很多改进,而innodb_buffer_pool_size参数仍然是一个关键的参数,它可以显著影响数据库的性能。然而,除了innodb_buffer_pool_size之外,还有其他一些参数也可以用来优化MySQL的性能和内存使用。这里有一些参数和优化措施的例子:
我们创建一个表,并生成两个表分区CUS_PART1,CUS_PART2.关于分区的分类可以参考https://www.cnblogs.com/wnlja/p/3979684.html
Zabbix 作为一个老牌的开源监控方案,长期被用于生产实践。但是原生方案一般会采用 MySQL 作为后端存储,无法应对更大规模的监控。TiDB 兼容 MySQL 协议,可以替换 MySQL 从而增强 Zabbix 的大规模监控能力,实现新的监控方案 TiZabbix。TiZabbix 通过优化监控实施逻辑,弥补因 TiDB 和 MySQL 差异造成的诸多问题,成功完成了 10000+ 监控对象和 16T 数据存储查询的实践。
领取专属 10元无门槛券
手把手带您无忧上云