在数据库中执行查询(select)在我们工作中是非常常见的,工作中离不开CRUD,在执行查询(select)时,多表关联也非常常见,我们用的也比较多,那么mysql内部是如何执行关联查询的呢?它又做了哪些优化呢?今天我们就来揭开mysql关联查询的神秘面纱。
在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。 例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。 当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。 避免使用SELECT *这种方式进行查询,应该只返回需要的列。
在创建索引的时候就要考虑到关联的顺序。当表A和表B用列c关联的时候,如果优化器关联的顺序是A、B,那么就不需要在A表的对应列上创建索引。没有用到的索引会带来额外的负担,一般来说,除非有其他理由,只需要在关联顺序中的第二张表的相应列上创建索引。
在优化有问题的查询时,目标应该是找到一个更优的方法获得实际需要的结果,而不是一定总是要求从MySQL获取一模一样的结果集
搭建这个框架我用了一个小工具,叫generator。 这个工具是配合MyBatis用的,确实很不错,能帮你自动生成很多代码,极大的减少了你的工作量。
作者:李博 , 链接: https://cnblogs.com/liboware/p/12740901.html
1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据。
子查询(嵌套查询) 查询工资高于1号部门平均工资的员工信息 select avg(sal) from emp where deptno=1; select * from emp where sal>2325; 把上面两条合并成一条 select * from emp where sal>(select avg(sal) from emp where deptno=1); 查询拿最高工资的员工信息 select * from emp where sal=(select max(sal) from em
对于此类考题,先说明如何定位低效SQL语句,然后根据SQL语句可能低效的原因做排查,先从索引着手,如果索引没有问题,考虑以上几个方面,数据访问的问题,长难查询句的问题还是一些特定类型优化的问题,逐一回答。
嵌套查询 用一条SQL语句得结果作为另外一条SQL语句得条件,效率不好把握 SELECT * FROM A WHERE id IN (SELECT id FROM B)
在MySQL中,查询操作通常会涉及到联结不同表格,而JOIN命令则在这一过程中扮演了关键角色。在JOIN操作中,我们通常会使用三种不同的方式,分别是内连接、左连接以及右连接。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
关联表查询尽量控制在五张表以内(阿里规范中是三张) 在关联查询时,尽量使inner join在前,left/right join在后。 关联查询时,要给关联表取别名。 关联查询时,关联表的字段前需要使用别名.字段名的形式。 关联查询时,on关联条件左侧是当前关联表,右侧是其他关联表。 select a.a1,b.b1,c.c1 from a as a inner join b as b on b.aid = a.id left join c as c on c.bid = b.id 联表规则 联表顺序
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
华夏银行数据库专家,专注于开源及国产分布式数据库技术,多年一线金融行业数据库开发与运维经验。目前主要负责分布式数据库的研究、应用与推广工作。
前两天开发找DBA解决一个含有子查询的慢sql,我们通过将其修改为关联查询和添加索引解决。考虑到 大多数开发并没有准确的理解 MySQL 的子查询执行原理。本文介绍如何解决子查询慢查的思路。
我们已经成功存储数据到数据表,但是所有操作都要自行编写代码,很多编程语言和框架会引入 ORM 来解决模型类与数据表记录的映射关系,ORM 架起了 SQL 语句和应用程序之间的桥梁,将模型类和数据表映射起来,将模型类字段和数据表字段建立关联。
在数据库设计中,经常会遇到需要在两个表之间建立关联关系的情况。一对一关联查询是其中一种常见的需求,它允许我们在两个表之间建立一对一的关系,以便在查询时将相关数据合并在一起。在本篇博客中,我将介绍如何使用 MyBatis 实现一对一关联查询,并详细讨论多种实现方式。
mysql查询过程: 客户端发送查询请求。 服务器检查查询缓存,如果命中缓存,则返回结果,否则,继续执行。 服务器进行sql解析,预处理,再由优化器生成执行计划。 Mysql调用存
在尝试编写快速的查询之前,需要清楚一点,真正重要是响应时间。如果把查询看作是一个任务,那么他由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上要优化其子任务,要么消除其中一些子任务,要么减少子任务的执行的次数,要么让子任务运行得更快。
MySQL 之所以被称之为关系型数据库,是因为可以基于外键定义数据表之间的关联关系,日常开发常见的关联关系如下所示:
先将外键配置删除,再更新表结构,然后再把外键添加回来即可 这也说明,建立关联前,要把表结构设计好,检查好,,,
blog.csdn.net/weixin_39420024/article/details/80040549
综上所述,图数据库处理大型图的查询性能问题可以通过索引优化、分片和分区、缓存机制、查询优化和并行计算等方法来解决。在实际应用中,需要根据具体的场景和需求选择合适的方法来提高查询性能。
MySQL优化一般是需要索引优化、查询优化、库表结构优化三驾马车齐头并进。 本章节开始讲查询优化。 一、为什么查询速度会慢 可以把查询当作一个任务,它由一系列子任务组成,每个子任务都会消耗一定的时间。如果要优化查询,实际上是优化其子任务,要么消除其中一些子任务,要么减少子任务的执行次数,要么让子任务运行得更快。 MySQL在执行查询的时候有哪些子任务,这个是有一定的方法进行剖析的,具体方法下回单独拿一个章节来分析。 通常来说,查询的生命周期大致可以按照顺序来看:从客户端,到服务端,然后在服务器上进行解
上一篇Django 2.1.7 模型 - 条件查询 F对象 Q对象 聚合查询讲述了关于Django模型的F对象、Q对象、聚合查询等功能。
MySQL索引分为普通索引、唯一索引、主键索引、组合索引、全文索引。索引不会包含有null值的列,索引项可以为null(唯一索引、组合索引等),但是只要列中有null值就不会被包含在索引中。
关联关系的话,比如user表(用户)id name把id设为主键与文章表article id name user_id把user_id设为索引外键,关联关系的话,是用户表的id与文章表的user_id作为关联关系。为什么呢? 因为用户表的id是主表的主键id。从表的user_id是外键啊.而关联关系是主表的主键id与从表的外键id相关联的啊
答: • 支持 SQL 92 标准; • 支持 Mysql 集群,可以作为 Proxy 使用; • 支持 JDBC 连接多数据库; • 支持 NoSQL 数据库; • 支持 galera for mysql 集群,percona-cluster 或者 mariadb cluster,提供高可用性数据分片集群; • 自动故障切换,高可用性; • 支持读写分离,支持 Mysql 双主多从,以及一主多从的模式; • 支持全局表,数据自动分片到多个节点,用于高效表关联查询; • 支持独有的基于 E-R 关系的分片策略,实现了高效的表关联查询; • 支持一致性 Hash 分片,有效解决分片扩容难题; • 多平台支持,部署和实施简单; • 支持 Catelet 开发,类似数据库存储过程,用于跨分片复杂 SQL 的人工智能编码实现,143 行 Demo 完成跨分片的两个表的 JION 查询; • 支持 NIO 与 AIO 两种网络通信机制,Windows 下建议 AIO,Linux 下目前建议 NIO; • 支持 Mysql 存储过程调用; • 以插件方式支持 SQL 拦截和改写; • 支持自增长主键、支持 Oracle 的 Sequence 机制。
MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志中。long_query_time的默认值为10,意思是运行10S以上的语句。默认情况下,Mysql数据库并不启动慢查询日志,需要我们手动来设置这个参数,当然,如果不是调优需要的话,一般不建议启动该参数,因为开启慢查询日志会或多或少带来一定的性能影响。慢查询日志支持将日志记录写入文件,也支持将日志记录写入数据库表。
问题1:char、varchar的区别是什么? varchar是变长而char的长度是固定的。如果你的内容是固定大小的,你会得到更好的性能。
MySQL 可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。
一直想要聊一聊关于开发中更建议使用单表查询+代码层组装 or 联表查询 的问题,在开发中每个同学的开发中有各自的习惯,笔者在公司也和一些同事关于这方面有一些探讨。
完全的范式和反范式是不存在的,在实际操作中建议混用这两种策略,可能使用部分范式化的schema、缓存表、以及其他技巧。
mybatis 高级映射和spring整合之高级映射 ————————————————学习结构———————————————————— 0.0 对订单商品数据模型进行分析 1.0 高级映射 1.1 一对一查询 1.2 一对多查询 1.3 多对多查询 1.4 resultMap总结 1.5 延迟加载 2.0 查询缓存 2.1 一级缓存 2.2 二级缓存(了解mybatis
此次使用 Apache NiFi 将 MySQL 热数据物化到 Ignite ,实现即时查询.
前段时间笔者遇到一个复杂的慢查询,今天有空便进行了整理,以便日后回顾。举一个相似的业务场景的例子。以文章评论为例,查询20191201~20191231日期间发表的经济科技类别的文章,同时需要显示这些文章的热评数目
今天优化了一个,join关联查的语句,需要优化join的语句,那我们肯定得了解他的一个执行过程。正所谓知己知彼,百战百胜!!
在业务开发中常遇到关联查询使用count()函数做统计的需求,同样在使用该函数时如果处理不当会导致统计出的数据是真实数据N倍的问题,出现重复问题导致统计不准确。出现该问题的原因是关联查询的主表与关联表关联关系不是一对一而是一对多的关系。
本文是在假定读者了解了直方图是什么,直方图如何进行添加维护的前提下,围绕直方图与索引的对比、何时应该添加直方图,及直方图如何帮助优化器选择更优的执行计划这几个方面来介绍直方图。 对直方图不太了解的小伙伴可参考GreatSQL社区的另一篇文章 4.直方图介绍和使用|MySQL索引学习
注:代码已托管在GitHub上,地址是:https://github.com/Damaer/Mybatis-Learning ,项目是mybatis-10-one2many,需要自取,需要配置maven环境以及mysql环境(sql语句在resource下的test.sql中),觉得有用可以点个小星。
在公司实习的时候,导师分配了SQL慢查询优化的任务,任务是这样的:每周从平台中导出生产数据库的慢查询文件进行分析。进行SQL优化的手段也主要是修改SQL写法,或者新增索引。
说明:上述多表查询中出现的问题称为:笛卡尔积的错误,结果是将每个员工分配了所有的部门所产生的
每次看到select * 的时候都需要用怀疑的眼光审视,是不是真的需要返回全部的列。
开启了MySQL慢查询日志之后,MySQL会自动将执行时间超过指定秒数的SQL统统记录下来,这对于搜罗线上慢SQL有很大的帮助。
slow_launch_time:表示如果建立线程花费了比这个值更长的时间,slow_launch_threads 计数器将增加
领取专属 10元无门槛券
手把手带您无忧上云