今天没怎么学习,简单写下MySQL里面innodb存储引擎下的索引组织表吧。
在MySQL中,索引(index)也叫做“键(key)”,它是存储引擎用于快速找到记录的一种数据结构。
不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多,如果表中查询的列有一个索引,MySQL能够快速到达一个位置去搜索数据文件,而不必查看所有数据,那么将会节省很大一部分时间。
我们上一篇讲了MySQL索引背后的数据结构及算法原理,我们知道了为什么使用索引查询数据效率那么高的原理了,我们接着看看MySQL的索引是如何实现的。
最近有一些朋友问我一些mysql相关的面试题,有一些比较基础,有些比较偏。这里就总结一些常见的mysql面试题吧,都是自己平时工作的总结以及经验。大家看完,能避开很多坑。而且很多问题,都是面试中也经常问到!希望能对大家的面试有一些帮助!!!
MySQL的索引分类问题一直让人头疼,几乎所有的资料都会给你列一个长长的清单,给你介绍什么主键索引、单值索引,覆盖索引,自适应哈希索引,全文索引,聚簇索引,非聚簇索引等……给人的感觉就是云里雾里,好像MySQL索引的实现方式有很多种,但是都没有一个清晰的分类。所以本人尝试总结了一下如何给MySQL的索引类型分类,便于大家记忆,由于MySQL中支持多种存储引擎,在不同的存储引擎中实现略微有所差距,下文中如果没有特殊声明,默认指的都是InnoDB存储引擎。
写在前面:2020年面试必备的Java后端进阶面试题总结了一份复习指南在Github上,内容详细,图文并茂,有需要学习的朋友可以Star一下! GitHub地址:https://github.com/abel-max/Java-Study-Note/tree/master
作为一个后端工程师,想必没有人没用过数据库,跟我一起复习一下MySQL吧,本文是我学习《MySQL实战45讲》的总结笔记的第三篇,总结了MySQL的索引相关知识。
英文原文:http://www.mysqltutorial.org/mysql-index/mysql-clustered-index/
MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,我们这里主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。
MVVC支持高并发并发性,实现四个标准的隔离水平,默认为REPEATABLEREAD,通过隙锁战略锁定与InnoDB相关的行,锁定索引中的间隙
除了常见的普通索引,唯一索引,组合索引,大家还能说一下mysql中有哪些其他类型的索引吗?
虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。 第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。
本篇文章给大家带来的内容是关于Mongodb与MySQL之间的比较分析,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
事务就是将一组SQL语句放在同一批次内去执行,只要一个SQL语句出错,则该批次内的所有SQL都将被取消执行。
目前大部分数据库系统及文件系统都采用B-Tree(B树)或其变种B+Tree(B+树)作为索引结构。B+Tree是数据库系统实现索引的首选数据结构。在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论MyISAM和InnoDB两个存储引擎的索引实现方式。MyISAM索引实现MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:image.png这里设表一共有三列,假设我
一般用磁盘IO评价索引结构的优劣。B-树检索一次,最多访问h个节点,即其时间复杂度O(h)=O(log_d N),其实红黑色O(h)=O(log_2 N),接下来以实际数据做对比:数据量640亿。
为了防止在事务中出现表结构操作,导致事务无法保证前后一致性问题,mysql增加了 (meta data lock,MDL) 锁.
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
不少的书或博客,在介绍InnoDB引擎索引原理的时候,都会给出如下类似的两幅图(比如参考博客2和3):
带索引的表在数据库中需要更多的存储空间 增、删、改命令需要更长的处理时间,因为它们需要对索引进行更新
在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。
一.什么是索引 相当于一本数的目录 二.使用索引的好处和坏处 好处:加快查找速度 坏处:占用磁盘空间 三.查看索引命令 命令格式: show index from 表名; 四.索引的算法 Index_type: BTREE (二叉树) Column_name: User Key_name: PRIMARY 五.索引的种类 1. index普通索引(务必掌握) 1.1 使用场景:通常表表中最为查询条件的字段设置为索引字段(性别 班级 名字) 1.2 使用规则 -字段值可以重复 -一个
MySQL一直是面试中的热点问题,也难道了很多的面试者。其实MySQL没那么难,只是大家没有系统化、实战性的过去学习、总结。同时很多开发者在实际的开发过程中也很少去接触一些偏向底层的知识。
InnoDB支持的哈希索引是自适应的,InnoDB会根据表的使用情况自动为表生成哈希索引,不能人为干预在表中生产哈希索引
回答:MySQL InnoDB 引擎底层数据结构是 B+ 树,所谓的索引其实就是一棵 B+ 树,一个表有多少个索引就会有多少颗 B+ 树,MySQL 中的数据都是按顺序保存在 B+ 树叶子节点上的。
普通索引: 即针对数据库表创建索引; 唯一索引: 与普通索引类似,不同的就是:MySQL数据库索引列的值必须唯一,但允许有空值; 主键索引: 它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引; 组合索引: 为了进一步榨取MySQL的效率,就要考虑建立组合索引。即将数据库表中的多个字段联合起来作为一个组合索引。
在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大部分内容参照自这一篇文章,有一些自己补充的,也算是重新学习一下 Java 吧。
前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大部分内容参照自这一篇文章,有一些自己补充的,也算是重新学习一下 Java 吧。 前序文章链接: Java 面试知识点解析(一)——基础知识篇 Java 面试知识点解析(二)——高并发编程篇 Java 面试知识点解析(三)——JVM篇 Java 面试知识点解析(四)——版本特性篇 Java 面试知识点解析(五
相比于大多数人熟悉的 MySQL 数据库的索引,Elasticsearch 的索引机制是完全不同于 MySQL 的 B+Tree 结构。索引会被压缩放入内存用于加速搜索过程,这一点在效率上是完爆 MySQL 数据库的。但是 Elasticsearch 会对全部 text 字段进行索引,必然会消耗巨大的内存,为此 Elasticsearch 针对索引进行了深度的优化。在保证执行效率的同时,尽量缩减内存空间的占用。这篇文章就深度解析了 Elasticsearch 索引原理,揭开搜索的神秘面纱。
主键:primary key 唯一键:unique 非空:not null 缺省:default 外键:foreign key
我们现在需要建立一个描述学校教务的数据库,该数据库涉及的对象包括学生的学号(Sno)、所在系(Sdept)、系主任姓名(Mname)、课程号(Cno)和成绩(Grade),假设我们使用单一的关系模式 Student 来表示,那么根据现实世界已知的信息,会描述成以下这个样子:
作者:junshili 一步一步推导出 Mysql 索引的底层数据结构。 Mysql 作为互联网中非常热门的数据库,其底层的存储引擎和数据检索引擎的设计非常重要,尤其是 Mysql 数据的存储形式以及索引的设计,决定了 Mysql 整体的数据检索性能。 我们知道,索引的作用是做数据的快速检索,而快速检索的实现的本质是数据结构。通过不同数据结构的选择,实现各种数据快速检索。在数据库中,高效的查找算法是非常重要的,因为数据库中存储了大量数据,一个高效的索引能节省巨大的时间。比如下面这个数据表,如果 Mys
目前大部分数据库系统及文件系统都采用 B-Tree(B 树)或其变种 B+Tree(B+树)作为索引结构。B+Tree 是数据库系统实现索引的首选数据结构。
MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。
每个InnoDB表都有一个称之为聚簇索引(clustered index)的特殊索引,存储记录行数据。通常,聚簇索引和主索引是近义的。
索引index:是帮助 Mysql 高效获取数据 的 有序的数据结构,在数据之外,数据库系统维护着的满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引
http://www.searchdoc.cn/rdbms/mysql/dev.mysql.com/doc/refman/5.7/en/index.com.coder114.cn.html
InnoDB索引采用了B-Tree的数据结构,数据存储在叶子节点上,每个叶子节点默认的大小是16KB。
索引:是一种特殊的文件,它们包含着对数据表里所有记录的引用指针。更通俗的说,数据库索引好比是一本书前面的目录,能加快数据库的查询速度。
稍不注意,可能你写的查询语句是会导致索引失效,从而走了全表扫描,虽然查询的结果没问题,但是查询的性能大大降低。
本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考。以下内容以MySQL5.5为准,如无特殊说明,存储引擎以InnoDB为准。
MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。
可以看到这是一颗二叉排序树,时间复杂度是和二分查找差不多的。每次都可以舍掉一半的数据。
按照特定的数据结构来组织、存储和管理数据的仓库叫做数据库,MySQL是一种关系型数据库。数据库最重要的功能就是存储数据,而数据存储是需要依赖具体的介质的,它就是磁盘。
问题1:char、varchar的区别是什么? varchar是变长而char的长度是固定的。如果你的内容是固定大小的,你会得到更好的性能。
上篇文章我们说了,联合索引会用两个以上列来创建索引,b+树是一颗,先用c2列排序,若结果相同,则用c3排序。innoDB的b+树特点是根节点保持不变,新表是先默认有聚簇索引,先有一个没有数据的根目录节点,放用户记录数据放入根几点中,当数据慢了,页分裂,会有多的节点,此刻根节点进化成根目录记录节点,数据存入底层节点。二级索引的内节点保证一致性,存入列值的时候加个主键。
索引的优点:1. 天生排序。2. 快速查找。 索引的缺点:1. 占用空间。2. 降低更新表的速度。
领取专属 10元无门槛券
手把手带您无忧上云