分组查询是对数据按照某个或多个字段进行分组,MYSQL中使用group by关键字对数据进行分组,基本语法形式为:
Select [select选项] 字段列表[字段别名]/* from 数据源 [where 字句] [group by子句 ][having 子句][order by 子句][limit 子句];
不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。对于一个二维表,每一行都可以看作是一条记录,每一列都可以看作是字段。
索引是加速数据库查询的关键。在设计表结构时,应该根据查询的需求添加合适的索引。常用的索引包括主键、唯一索引、普通索引、联合索引、前缀索引(vachar、text这种长的数据并且只需要前几个区分度就很高)等。
where是在分组(聚合)前对记录进行筛选,而having是在分组结束后的结果里筛选,最后返回整个sql的查询结果。
个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~
注意:若数据表中含有主键,而主键具有唯一性,所以在数据复制时还要考虑主键冲突的问题
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
工作中常常会使用ORDER BY进行排序,了解ORDER BY多种排序方式是非常有必要的。
UPDATE 表名 SET 字段名1=值1,字段名2=值2,...[WHERE 条件];
SELECT column, group_function,... FROM table
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最前列并且不跳过索引中的列。
在企业日常生产环境中,除非有很大的业务数据变动,否则不会轻易地修改或创建新的数据库和数据表,一般都是在原有的表内添加修改操作,以及使用最频繁的查询操作。
注意:null 值不参与聚合函数运算(如果你查询address 出现结果为5)
使用SQL对数据进行提取和分析时,我们经常会遇到数据重复的场景,需要我们对数据进行去重后分析。
MySql基本操作命令,这里是Win平台下的基本命令。mysql不区分大小写。命令都需要以“;”英文分号结尾。 如果有错误或者建议欢迎指出,正在学习MYSQL中。
可以得到索引的本质:索引是数据结构。 拥有排序和查找两大功能,用于解决where和order by后面字段是否执行快。
而我们的MySQL数据库属于开源免费的中小型数据库,后来Sun公司收购了MySQL,而Oracle又收购了Sun公司。 目前Oracle推出了收费版本的MySQL,也提供了免费的社区版本。
C. 查询年龄小于45的员工 , 并根据工作地址分组 , 获取员工数量大于等于3的工作地址
在看此篇前,建议先阅读MySQL索引,对索引有个基本了解:MySQL数据库进阶-索引-CSDN博客
① 分组查询中,select 后面只能出现,在 group by 后出现过的列或者聚合函数。 ② where 是在分组前对记录进行筛选,而 having 是在分组结束后的结果里筛选,最后返回最终查询结果。 ③ having 后所接的字段必须经过过滤(即:该字段必须使用),一般与 group by 连用 ④ 分组查询中,若一个字段在一个组内有多个结果,则后一个结果覆盖前一个结果
一、单表查询的语法 SELECT 字段1,字段2... FROM 表名 WHERE 条件 GROUP BY field HAVING 筛选 ORDER BY field LIMIT 限制条数 二、关键字的执行顺序 1.找到表:from 2.拿着where指定的约束条件,去文件/表中取出一条条记录 3.将取出的一条条记录进行分组group by,如果没有group by,则整体作为一组 4.将
如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
一、数据库管理 1.1查询所有数据库 mysql> show databases; +--------------------+ Database +--------------------+ information_schema-- mysql元数据,基础数据 mysql--mysql配置数据库,其中包含用户信息。(用户名和密码,权限管理) performance_schema--mysql数据库软件的运行数据,日志信息,性能数据 test--测试数据库。空的 +-------------------
如果一次性需要插入大批量数据 ( 比如 : 几百万的记录 ) ,使用 insert 语句插入性能较低,此时可以使
---单表的查询学习 --查询表的所有数据 select * from 表名;*代表所有 select * from emp; --查询表中指定字段的值 select 字段名1,字段名2,...from表名 select empno from emp; select empno,ename from emp; --给查询结果中的字段使用别名 --在字段名后使用关键字 字段名 as "别名" --作用:方便查看查询结果 --注意:as关键字可以省略不写,别名中没有特殊字符双引号也可以省略不写。 select empno 员工编号,ename"员工 姓名",job as 工作,mgr as "领导编号" from emp; --连接符:select 字段名||'字符'||字段名||..... from 表名 --||为sql语句的字符链接符,使用在select和from之间 --字符链接格式为 字段名||'字符'||字段名 --注意:一个拼接好的连接在结果集中是作为一个新的字段显示,可以使用别名优化字段显示。 select empno||'的姓名是'||ename as"信息",job||'哈哈'||mgr from emp; --去除重复 select distinct 字段名,字段名,...fromn 表名 ---注意:去除重复的规则是按照行进行去除的,多行数据完全相同取其一 select distinct job ,mgr from emp; --排序 --单字段排序 --select * from 表名 order by 字段名 asc 升序排序 asc可以省略不写 --select * from 表名 order by 字段名 desc 降序序排序 --多字段排序 --select * from emp order by 字段名1,字段名2... --先按照字段1排序,如果字段1的值相同,则按照字段2排序,.... select * from emp order by empno desc--单字段排序 降序 select empno,ename,job from emp order by ename asc--单字段排序 升序 select * from emp order by empno,ename--多字段排序 --字段的逻辑运算 --select关键字和from关键字之间的字段可以直接进行四则运算 --字段与字段之间也可以直接进行运算 --注意:字段值为数值类型 select * from emp select empno,ename,job,sal*2+1000,sal+comm from emp ----------------------------------------------------------------- --使用where子句查询筛选 --select 字段名,字段名,...from表名 where 筛选条件 --单筛选条件 --使用运算符进行筛选 =,>,>=,<,<=,<> 单个条件中 --注意:如果条件中的值为字符,必须使用单引号括起来 --查询所有的员工的工资信息 select empno,ename,sal+comm as 薪资 from emp --查询SMITH的个人信息 select * from emp where ename='SMITH' --查询SMITH的薪资信息,逻辑运算符= select empno,ename,sal,sal+comm from emp where ename='SMITH' --查询工资大于1000的员工信息,逻辑符> select * from emp where sal>'2000' --查询工资不等于3000的员工信息 select * from emp where sal<>3000 order by sal --练习: --查看工资等于1250的员工信息
在涉及order by操作的sql时,b-tree索引返回的结果是有序的,可以直接返回,而其他索引类型,需要对索引返回结果再进行一次排序。b-tree索引的默认排序为升序,空值放在最后,创建索引时可以指定排序方式,如按倒序排序时,空值默认是放在最前的,但往往我们的查询并不想展示空值的结果,此时可以在创建索引时指定排序desc nulls last以达到和查询sql切合的目的。
3,group by:将取出的一条条数据进行分组,如果没有group by,则整体作为一组
5、查询fruits表中f_name和f_price的列,并且f_price的数值等于5.2
描述:学习MySQL除了一些基本的SQL语句以外,我们还需要学习MySQL扩展部分的知识;通过前面的学习我们知道SQL类型大致分为四类,在后面的学习采用这四类来入门了解使用MySQL 8.0;
DQL 英文全称是 Data Query Language( 数据查询语言 ) ,数据查询语言,用来查询数据库中表的记
基本语法格式: SELECT 字段1,字段2... FROM 表名 WHERE 条件 GROUP BY field 分租 HAVING 筛选 ORDER BY field 排序 LIMIT 限制条数
#4.like 'fdfdsf': parttern可以是%或_。 %表示任意多字符,_表示一个字符
索引是提高关系型数据库查询性能的利器,但其并非银弹,必须精通其原理,才能发挥奇效。
上一篇文章 《MySQL索引原理机器优化》讲了索引的一些原理以及优化方案,这一次学习对查询的优化,毕竟快速的查找到数据才是我们的最终目的.
②唯一性原则 即主键值必须唯一标识表中的每一行,且不能为 NULL,即表中不可能存在有相同主键值的两行数据
https://www.cnblogs.com/poloyy/category/1683347.html
索引是经常用到的技术,但有些程序员对索引的原理了解不深,发现数据查询性能有问题立刻想起建索引,当然经常也没啥效果,反而消耗资源。那么到底什么时候该用索引以及该怎么用?我们来分析索引清理背后的技术原理就知道了。 索引技术的初衷是为了快速从一个大数据表中找出某个字段等于确定值(比如按身份证号找出某个人)的记录。一个 N 行的数据表,遍历查找则需要比较 N 次,而如果数据按该字段值(在索引中称为键值)有序,那么就可以用二分法查找,只要比较 logN 次(以 2 为底),比如 10 亿行数据只要比较 30 次(10 亿约是 2^30),这显然能大大提高性能。有时可能还会有键值有重复的情况(按出生日期找人)或按键值区间的查找需求(按出生日期区间找人),比较次数会比 logN 大一些,但基本仍是这个数量级的。 索引的本质就是排序。
上一篇介绍了4种进行MySQL性能优化排查的小技巧,本篇就通过从增、删、改、查的语法中如何进行优化,帮助大家更好理解MySQL语法,进行性能优化。
在 WHERE 关键词后可以有多个查询条件,这样能够使查询结果更加精确。多个查询条件时用逻辑运算符 AND(&&)、OR(||)或 XOR 隔开。
INSERT INTO 表名 VALUES(值1,值2,…),(值1,值2,…),(值1,值2,…);
where & group by & having & order by & limit ⼀起协作
整数:INT。 ⼩数:DECIMAL。 字符串:TEXT。 ⽇期与时间:DATETIME。
查询数据的本质:mysql会到你本地的硬盘上找到对应的文件,然后打开文件,按照你的查询条件来找出你需要的数据。下面是完整的一个单表查询的语法 select * from,这个select * 指的是要查询所有字段的数据。 SELECT distinct 字段1,字段2... FROM 库名.表名 #from后面是说从库的某个表中去找数据,mysql会去找到这个库对应的文件夹下去找到你表名对应的那个数据文件,找不到就直接报错了,找到了就继续后面的操作 WHERE 条件 #从表中找符合条件的数据记录,where后面跟的是你的查询条件 GROUP BY field(字段) #分组 HAVING 筛选 #过滤,过滤之后执行select后面的字段筛选,就是说我要确定一下需要哪个字段的数据,你查询的字段数据进行去重,然后在进行下面的操作 ORDER BY field(字段) #将结果按照后面的字段进行排序 LIMIT 限制条数 #将最后的结果加一个限制条数,就是说我要过滤或者说限制查询出来的数据记录的条数关于上面这些内容,我们在下面一个一个的来详细解释
领取专属 10元无门槛券
手把手带您无忧上云