InfluxDB 3.0(以前称为 InfluxDB IOx)是一个(云)可扩展数据库,为数据加载和查询提供高性能,并专注于时间序列用例。本文介绍了数据库的系统架构。
加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
大家注意:因为微信改了推送机制,会有小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了。所以建议大家加个星标
哈喽,我是狗哥。最近都在加班有点忙,一直没时间写文章。加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的 bug,很好解决,有点问题的是,修正线上的重复数据。
最近再解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
线上库有6个表存在重复数据,其中2个表比较大,一个96万+、一个30万+,因为之前处理过相同的问题,就直接拿来了上次的Python去重脚本,脚本很简单,就是连接数据库,查出来重复数据,循环删除。
因为Redis是非关系型数据库,它是不支持sql语言的,所以其有特有的命令需要我们去学习。
在SQL(Structured Query Language)中,DISTINCT关键字是一个强大的工具,用于查询去重。它允许我们从数据库中获取唯一(不重复)的记录,而不考虑其他列的值。本文将深入探讨SQL中的DISTINCT关键字,包括其语法、用途和示例。
ClickHouse应用于OLAP(在线分析处理)领域,具体来说满足如下特点使用此技术比较合适:
在SQL数据库中,UNIQUE约束是一种用于确保数据唯一性的重要工具。本文将深入探讨UNIQUE约束的概念、应用场景以及使用方法,以帮助读者更好地理解和利用UNIQUE约束来保证数据的一致性和准确性。
有些 MySQL 数据表中可能存在重复的记录,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。
读取不重复的数据可以在 SELECT 语句中使用 DISTINCT 关键字来过滤重复数据。
在MySQL中,有时候我们需要从表中检索唯一的、不重复的数据。这时,我们可以使用DISTINCT关键字来过滤掉重复的数据行。在本文中,我们将深入探讨MySQL中DISTINCT的用法以及如何在查询中使用它来得到不重复的结果集。
简单查询的主要特征就是将一张数据表之中的全部数据行进行显示,而后可以利用 SELECT 子句来控制所需要的输出列。
UNION的使用 合并查询结果 利用UNION关键字,可以给出多条SELECT语句,并将它们的结果组合成单个结果集。合并时,两个表对应的列数和数据类型必须相同,并且相互对应。各个SELECT语句之间使用UNION或UNION ALL关键字分隔。 语法格式: SELECT column,... FROM table1 UNION [ALL] SELECT column,... FROM table2 UNION操作符 [在这里插入图片描述] UNION 操作符返回两个查询的结果集的并集,去除重复记录。 UNI
scroll 查询可以有效地从 ES 中单个检索中获取大量的结果,类似于数据库中的 cursor。scroll 查询可以获取时间点的快照数据。每次请求会将查询到的 id 列表保留在一个 context 中,即记一个游标 scroll_id。
truncate和不带where子句的delete,以及drop都会删除表内的数据
题目中有一个特殊且重要的条件,就是排序,这个链表是已经排好序的,那么如果存在相同的元素,一定是相邻的节点,这就好办了,我们可以通过遍历一次链表,在遍历过程中判断当前节点的 val 和下一个节点的 val 是不是相等,如果相等则删除下个节点,以此类推,直到遍历完链表。
create database if not exist db1;#如果不存在db1则创建
之前我们已经了解了SQL语言的分类,可以划分为:DDL(数据定义语言)、DML(数据操纵语言)、DQL(数据查询语言)、DCL(数据控制语言)、TPL(事务处理语言)、CCL(指针控制语言),本文将介绍DQL。
分页功能是很常见的功能,特别是当数据量越来越大的时候,分页查询是必不可少的。实现分页功能有很多种方式,如果使用的ORM框架是mybatis的话,有开源的分页插件可以使用,如:Mybatis-PageHelper。如果不使用分页插件,那么就需要手动分页了,由于不同的数据库实现分页的SQL语句并不一致,如Mysql使用的是limit关键字,而Oracle使用的是rownum,所以本文本文讲解的分页方案只适用于Mysql数据库。
最近在做题库系统,由于在题库中添加了重复的试题,所以需要查询出重复的试题,并且删除掉重复的试题只保留其中1条,以保证考试的时候抽不到重复的题。
MergeTree在写入一批数据时,数据总会以数据片段的形式写入磁盘,且数据片段不可修改。为了避免片段过多,ClickHouse会通过后台线程,定期合并这些数据片段,属于相同分区的数据片段会被合成一个新的片段。
公司业务使用到Greenplun数据库,根据查询的时间戳来不断的将每个时间段之间的数据,进行数据交换,但是今天发现,mysql的时间戳没有小数点后6位,即精确度到毫秒级的,所以对于这个问题,将和Greenplum数据库的时间戳后6位保持一样。当然了最大位数是6位,也可以是1-6之间的整数。可以根据自己的业务进行设计。这样进行查询每个时间段之间的数据就不会出现丢失数据和重复数据的情况了。
ClickHouse 是一款 ROLAP 列式数据库,在海量数据分析场景中,能够帮助我们快速得到想要的"分析性"数据。本文主要从个人视角讲解 ClickHouse 一次数据查询的整体流程,更多的是自己的一些理解和思考,如有不对,欢迎指出和交流。
对于弹性伸缩和高可用的系统来说,一般有大量的指标数据需要收集和存储,如何为这样的系统打造一个监控方案呢?本文介绍了如何使用 Thanos+Prometheus+Grafana 构建监控系统。
一、背景介绍 上回分享的《五分钟打造高逼格的监控系统》,我们成功搭建并初步介绍了Prometheus+NodeExporter+Grafana框架体系,本回开始给大家分享Prometheus服务监控2个核心的功能:
◆ ClickHouse概念 clickhouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS),由俄罗斯最大的搜索公司Yandex开发,于2016年开源,采用c++开发。 ◆ OLAP 和 OLTP 这两个概念 OLAP(On-Line Analytical Processing):联机分析处理OLAP(On-Line Analytical Processing),仓库型数据库,主要是读取数据,做复杂数据分析(多维),侧重技术决策支持,提供直观简单的结果,开源OLAP引擎包含Hive、Sp
最近在做一个批量数据导入到MySQL数据库的功能,从批量导入就可以知道,这样的数据在插入数据库之前是不会进行重复判断的,因此只有在全部数据导入进去以后在执行一条语句进行删除,保证数据唯一性。
Clickhouse 是一个高性能且开源的数据库管理系统,主要用于在线分析处理 (OLAP) 业务。它采用列式存储结构,可使用 SQL 语句实时生成数据分析报告,另外它还支持索引,分布式查询以及近似计算等特性,凭借其优异的表现,ClickHouse 在各大互联网公司均有广泛地应用。
blog.csdn.net/n950814abc/article/details/82284838
工作中,发现Oracle数据库表中有许多重复的数据,而这个时候老板需要统计表中有多少条数据时(不包含重复数据),只想说一句MMP,库中好几十万数据,肿么办,无奈只能自己在网上找语句,最终成功解救,下面是我一个实验,很好理解。
SQL如何删除重复数据 在使用数据库时,如何删除重复数据? 如图所示:用户表(user)数据 1、输入查询语句(查询name重复数据) select * from user where name in (select name from user group by name having count(name) > 1) 查询后,可以看到name叫“张三”的有3条数据。 可以使用distinct去重(返回不重复的用户名) select distinct name from user 查询后,
查询出不重复数据有多少条 SELECT distinct phone time FROM 数据.new_table; select phone,time from 数据.new_table group by phone; Error Code: 1290. The MySQL server is running with the --secure-file-priv option so it cannot execute this statement 解决方法:将CSV文件放到mysql的安全目录up
总所周知,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快。而支撑这一快速的背后就是索引;MySQL索引问题也是大家经常遇到的面试题模块,想想自己也没有去系统地总结过索引,所以记录这篇文章来讲下索引。下面还是按照索引是什么->索引分类->各类索引的创建及使用->索引的特点->使用索引的注意事项来写。
[Err] 1093 - You can't specify target table 'dept' for update in FROM clause 原因:更新这个表的同时又查询了这个表,查询这个表的同时又去更新了这个表,可以理解为死锁。mysql不支持这种更新查询同一张表的操作。所以我们用生成临时表去操作,上面的语句就是这么写的。复制即可。
你答:有这样一个故事,讲的是一个小男孩和一个小女孩,这个小男孩呢,用很多好玩石头,而这个小女孩呢,有好多好吃的糖果,有一天,他们相互约定:小男孩用所有的石头交互小女孩所有的糖果。到了交换的那一天,小女孩带上了所有的糖果,而小男孩自己偷偷留下了一些石头,就这样他们交换了。这天晚上啊,小女孩睡的特别踏实,而小男孩呢,总是睡不着,他总在想,小女孩是不是也留下了一些糖果呢?
对于OLAP查询来说,存在多种不同类型的查询,存储结构的不同会影响到不同查询的数据表现。所以CarbonData的定位是作为一种通用的查询存储数据,通过Spark SQL来解决海量查询的问题,并且能够与Hadoop生态圈进行无缝对接。CarbonData最初的应用是与Spark SQL和Spark DataFrame深度结合,后续由携程团队将CarbonData引入了Presto,滴滴团队将CarbonData引入Hive。
在涉及order by操作的sql时,b-tree索引返回的结果是有序的,可以直接返回,而其他索引类型,需要对索引返回结果再进行一次排序。b-tree索引的默认排序为升序,空值放在最后,创建索引时可以指定排序方式,如按倒序排序时,空值默认是放在最前的,但往往我们的查询并不想展示空值的结果,此时可以在创建索引时指定排序desc nulls last以达到和查询sql切合的目的。
领取专属 10元无门槛券
手把手带您无忧上云