很多时候我们看到一些表字符串类型的字段定义为varchar(255),开始以为varchar只能定义为255这个长度值,其实不然。
这个系统有一个会员表 有下列字段: 会员编号 INT 会员姓名 VARCHAR(10) 会员身份证号码 VARCHAR(18) 会员电话 VARCHAR(10) 会员住址 VARCHAR(50) 会员备注信息 TEXT
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行。 表越大,花费的时间越多。如果表中查询的列有一个索引,MySQL能快速到达一个位置去搜寻到数据文件的中间,没有必要看所有数据。 大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)在B树中存储。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。
最近有一些朋友问我一些mysql相关的面试题,有一些比较基础,有些比较偏。这里就总结一些常见的mysql面试题吧,都是自己平时工作的总结以及经验。大家看完,能避开很多坑。而且很多问题,都是面试中也经常问到!希望能对大家的面试有一些帮助!!!
MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。如果表中查询的列有一个索引,MySQL能快速到达一个位置去搜寻到数据文件的中间,没有必要看所有数据。大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)在B树中存储。只是空间列类型的索引使用R-树,并且MEMORY表还支持hash索引。
在数据量非常大的情况下,在数据库中加入索引能够提升数据库查找的性能,常见的mysql索引分为以下几类: ①普通索引 可以直接创建索引:CREATE INDEX indexName ON table(column(length)) 如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length 可以通过修改表结构来创建索引:ALTER tableADD INDEX indexName ON (column(length)) 可以在
索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行,还需要考虑每次读入数据页的IO开销。而如果采取索引,则可以根据索引指向的页以及记录在页中的位置,迅速地读取目标页进而获取目标记录。
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。
如果是char、varchar类型,length可以小于字段实际长度。如果是blob和text类型,必须指定 length
无论在工作还是面试中,关于SQL中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
但是MySQL执行的时候,并不是按顺序执行的,MySQL执行sql语句是从from开始执行的,上面这条语句的执行顺序是:
用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始读完整个表,直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么,如何使用索引来改善性能,以及索引可能降低性能的情况。
前两天同事提了一个问题,MySQL 5.7中给某张表字段增加一个单键值索引,提示了如下错误,
官方定义:索引是帮助mysql高效获取数据的数据结构。划重点:数据结构。在数据之外,数据库系统还维护了一套满足特定查找算法的数据结构,这些数据结构以某种方式指向数据,这种数据结构就是索引,可以简单的理解为”排好序的快速查找数据结构”。索引本身也很大,不可能全部存储在内存,通常以索引文件的形式存储在磁盘中。
网名 bisal ,具有十年以上的应用运维工作经验,目前主要从事数据库应用研发能力提升方面的工作,Oracle ACE ,拥有 Oracle OCM & OCP 、EXIN DevOps Master 、SCJP 等国际认证,国内首批 Oracle YEP 成员,OCMU 成员,《DevOps 最佳实践》中文译者之一,CSDN & ITPub 专家博主,长期坚持分享技术文章,多次在线上和线下分享技术主题。
问题1:char、varchar的区别是什么? varchar是变长而char的长度是固定的。如果你的内容是固定大小的,你会得到更好的性能。
一 索引的原理 1. 索引原理 索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等 本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。 数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等
本文中说到的“建”,并非单纯的建一个库,或是建一张表,而是你建好的库和表在项目的运营中,是否能应付各种事件,下面我说说几个我在项目中遇到的问题以及处理的方法,算是一个小小的心得,给大家分享下。
来源:blog.csdn.net/qq_39390545/article/details/106766965
二、MYSQL数据库设计原则 1、核心原则 不在数据库做运算; cpu计算务必移至业务层; 控制列数量(字段少而精,字段数建议在20以内); 平衡范式与冗余(效率优先;往往牺牲范式) 拒绝3B(拒绝大sql语句:big sql、拒绝大事务:big transaction、拒绝大批量:big batch); 2、字段类原则 用好数值类型(用合适的字段类型节约空间); 字符转化为数字(能转化的最好转化,同样节约空间、提高查询性能); 避免使用NULL字段(NULL字段很难查询优化、NULL字段的索引需要额外空
所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
面试官:“小陈,说一下你常用的 SQL 优化方式吧。” 陈小哈:“那很多啊,比如不要用 SELECT *,查询效率低。巴拉巴拉...”
版权声明:本文为CSDN博主「_陈哈哈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/qq_39390545/article/details/106766965
create [unique] index 索引名称 on 表名(列名[(length)]);
无论在工作还是面试中,关于 SQL 中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。
显示这一行的数据是关于哪张表的,有时不是真实的表名字,看到的是derivedx(x是个数字,我的理解是第几步执行的结果)
前言:MySQL的优化指南针对的是数据量大的情况下,数据量不够大的话没必要纠结优化的问题。但是当数据量变大之后,很多地方都是需要优化的,不然就会出现很多问题,最显著的现象是查询和修改变慢,即响应时间变长,所以本文的优化默认是数据量较大的情况。
一.索引的作用 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,所以查询语句的优化显然是重中之重。 在数据量和访问量不大的情况下,mysql访问是非常快的,是否加索引对访问影响不大。但是当数据量和访问量剧增的时候,就会发现mysql变慢,甚至down掉,这就必须要考虑优化sql了,给数据库建立正确合理的索引,是mysql优化的一个重要手段。 索引的目的在于提高查询效率,
陈小哈:“SELECT * 它好像比写指定列名多一次全表查询吧,还多查了一些无用的字段。”
索引在关系型数据库中,是一种单独的、物理的对数据库表中的一列或者多列值进行排序的一种存储结构,它是某个表中一列或者若干列值的集合,还有指向表中物理标识这些值的数据页的逻辑指针清单。 索引的作用相当于图书的目录,可以根据目录重点页码快速找到所需要的内容,数据库使用索引以找到特定值,然后顺着指针找到包含该值的行,这样可以是对应于表的SQL语句执行得更快,可快速访问数据库表中的特定信息。
索引也是一种排好序的数据结构,它记录了原数据的单个列或多个列,通过索引查询,程序不需要查所有记录,只需要先按照索引查到具体的数据,然后在根据索引记录的指针位置,找到对应的原始数据记录。举个例子来说,索引就好比是我们书本的目录,我们通过目录能够快速定位到我们想看指定章节的页数,如果我们不适用索引,会是什么情况呢?我们最大可能就是从头往后方,一页一页确认去找。
表示唯一的,不允许重复的索引,如果该字段信息保证不会重复例如身份证号用作索引时,可设置为unique
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高校获取数据的数据结构。
索引(Index)是帮助DBMS高效获取数据的数据结构。 分类:普通索引/唯一索引/主键索引/全文索引。
用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么以及如何使用索引来改善性能,以及索引可能降低性能的情况。
虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息
执行 select * from T where k between 3 and 5,需要几次树的搜索,扫描多少行?
连接命令:mysql -h[主机地址] -u[用户名] -p[用户密码] 创建数据库:create database [库名] 显示所有数据库: show databases; 打开数据库:use [库名] 当前选择的库状态:SELECT DATABASE(); 创建数据表:CREATE TABLE [表名]([字段名] [字段类型]([字段要求]) [字段参数], ......); 显示数据表字段:describe 表名; 当前库数据表结构:show tables; 更改表格 AL
每个表有且一定会有一个聚集索引,整个表的数据存储在聚集索引中,mysql索引是采用B+树结构保存在文件中,叶子节点存储主键的值以及对应记录的数据,非叶子节点不存储记录的数据,只存储主键的值。当表中未指定主键时,mysql内部会自动给每条记录添加一个隐藏的rowid字段(默认4个字节)作为主键,用rowid构建聚集索引。
说明:MySQL在Windows下不区分大小写,但在Linux下默认是区分大小写,为了避免出现不必要的麻烦,统一使用小写
最常用的索引也就是B-tree索引和Hash索引,且只有Memory,NDB两种引擎支持Hash索引。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的分析和预测上。一般来说: a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和 order by、group by 发生的列,可考虑建立集群索引; b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引, 选择度高的列建议作为索引的第一个字
CREATE UNIQUE INDEX 索引名 ON 表名(字段名1(长度),字段名2(长度))
本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看
领取专属 10元无门槛券
手把手带您无忧上云