关于数据库中行数统计,无论是MySQL还是Oracle,都有一个函数可以使用,那就是COUNT。
一 索引的原理 1. 索引原理 索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等 本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。 数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等
这里主要介绍 MySQL 的前缀索引。从名字上来看,前缀索引就是指索引的前缀,当然这个索引的存储结构不能是 HASH,HASH 不支持前缀索引。
数据库查询相信很多人都不陌生,所有经常有人调侃程序员就是CRUD专员,这所谓的CRUD指的就是数据库的增删改查。
作为后台开发,在日常工作中如果要接触Mysql数据库,那么不可避免会遇到Mysql中的NULL和空值。那你知道它们有什么区别吗?
在工作中遇到count(*)、count(1)、count(col) ,可能会让你分不清楚,都是计数,干嘛这么搞这么多东西。
count(*) 和count(1) 都是统计行数,而count(col) 是统计col列非null的行数
SQL常见面试题总结 (原创不易,你们对阿超的赞就是阿超持续更新的动力!) (以免丢失,建议收藏,阿超持续更新中......) (------------------------------------------------------------------------) 常用SQL语句 SQL常用的聚合函数 Group By和Order By where和having子句的区别 count(*)和count(1)有什么区别 count(1) 含义 用count对字段为null的数据可以查出来吗
数据库查询相信很多开发人员都不陌生,经常有人称程序员工作就是写CRUD,所谓的CRUD指的就是数据库的增删改查。
在看此篇前,建议先阅读MySQL索引,对索引有个基本了解:MySQL数据库进阶-索引-CSDN博客
哈喽,我是狗哥。小伙伴都知道我最近换工作了,薪资、工作内容什么的都是我比较满意的。五月底也面试了有 6、7 家公司,应该拿了有 5 个 offer。这段时间也被问了很多面试题,我打算写一个专题分享出来,希望对你们有所帮助~
在 MySQL 中,COUNT 函数是一个非常常用的聚合函数,它用于计算某列或某表达式在查询结果中出现的次数。但是,在实际使用过程中,我们可能会遇到不同的 COUNT 函数写法,比如 COUNT(*)、COUNT(主键id)、COUNT(字段) 和 COUNT(1),这些写法在效率上有何差别呢?本文将详细探讨这个问题。
本文若未特意说明使用的数据表,均为 MySQL索引(四)常见的索引优化手段 中的示例表。
COUNT(1) 和 COUNT(*) 表示的是直接查询符合条件的数据库表的行数。而 COUNT(列名) 表示的是查询符合条件的列的值不为 NULL 的行数。
当在很长的字符串的字段上创建索引时,索引会变得很大而且低效,一个解决办法是 crc32 或 md5 函数对长字符串进行哈希计算,然后在计算的结果上创建索引。在 MySQL 5.7 以后的版本,可以创建一个自动生成的字段,例如可以创建下面一个表:
索引是加速数据库查询的关键。在设计表结构时,应该根据查询的需求添加合适的索引。常用的索引包括主键、唯一索引、普通索引、联合索引、前缀索引(vachar、text这种长的数据并且只需要前几个区分度就很高)等。
over_clause 表示 COUNT 以窗口函数工作,MySQL 8.0 开始支持,这个不在本文展开,感兴趣的同学请参考 Section 14.20.2, “Window Function Concepts and Syntax”。
开发过程中总是纠结于count时到底是用count(列名)、 count(常量)、 count(*)其中的哪个,用哪个统计数据的效率会高些,每次开发每次去百度找前辈的经验介绍,但是每次得到的建议总是会有些差别,今天看到了一篇阿里关于count的文章,觉得挺好,在这里分享一下,顺便加上一些个人的使用建议。
网上有很多关系型数据库各种count操作孰优孰劣的文章,如下是曾经写过的有关Oracle和PG中count的文章,
统计数据的需求在我们日常开发中是非常容易遇到了,MySQL也支持多种的计算的函数,
统计一个表的数据量是经常遇到的需求,但是不同的表设计及不同的写法,统计性能差别会有较大的差异,下面就简单通过实验进行测试(大家测试的时候注意缓存的情况,否则影响测试结果)。
印象中网上有些“XX 面试官”系列的网文也有过类似问题的讨论,那 MySQL 统计数据总数 count(*) 、count(1)和count(列名) 哪个性能更优呢?今天我们就来聊一聊这个问题。
在实际开发过程中,统计一个表的数据量是经常遇到的需求,用来统计数据库表的行数都会使用COUNT(*),COUNT(1)或者COUNT(字段),但是表中的记录越来越多,使用COUNT(*)也会变得越来越慢,本文我们就来分析一下COUNT的性能到底如何。
最左前缀示范 mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; Empty set (0.39 sec) mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀 Query OK, 0 rows affected (15.27 sec) Records: 0 Duplicates: 0 Wa
当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1)、count(*)、count(字段) 等。
今天在读一篇关于数据库索引介绍的文章时,该文章提到了前缀索引,对于我这个搞数据库应用开发那么多年的人来说,这个词还真是一个新词,没用过。于是打算研究一番。
例1: 没有携带on的条件字句,此条slq查询的结构集等价于,a表包含的条数*b表包含的乘积:
我们用 explain 分析包含 group by 的 select 语句时,从输出结果的 Extra 列经常可以看到 Using temporary; Using filesort。看到这个,我们就知道 MySQL 使用了临时表来实现 group by。
如果问一个程序员MySQL中SELECT COUNT(1)和SELECT COUNT(*)有什么区别,会有很多人给出这样的答案“SELECT COUNT(*)”最终会转化成“SELECT COUNT(1),而SELECT COUNT(1)省略了转换的这一步,所以SELECT COUNT(1)效率更高“,甚至有一些面试官也会给出类似的答案。最近在看一些历史遗留代码,绝大多数统计数量的SQL都在用SELECT COUNT(1),觉得有必要搞清楚这个问题。
多值索引和基于多个字段的联合索引完全不同,联合索引是基于多个一维字段,比如字段 r1 int, r2 int,r3 int,这三个字段的组合是联合索引。一般用于三个字段的联合查找,比如 r1 = 1 and r2 = 2 and r3 = 2 等等。
通过 SHOW STATUS 可以提供服务器状态信息,也可以使用 mysqladmin extende d-status 命令获得。 SHOW STATUS 可以根据需要显示 session 级别的统计结果和 global级别的统计结果。
mysql的索引类型主要分为聚集索引和非聚集索引,通过聚集索引可以获取到整行数据,而通过非聚集索引只能获得主键id和当前字段。当我们要查询的字段就是非聚集索引叶子含有的字段(primary key + field),那么就不需要回表查询更多的字段,这就是覆盖索引。
本文是 group by 实现过程分析的第 2 篇文章,第 1 篇是 MySQL 怎么用索引实现 group by? <- 点击阅读
开启了MySQL慢查询日志之后,MySQL会自动将执行时间超过指定秒数的SQL统统记录下来,这对于搜罗线上慢SQL有很大的帮助。
松哥原创的 Spring Boot 视频教程已经杀青,感兴趣的小伙伴戳这里-->Spring Boot+Vue+微人事视频教程
1.查版本号无论做什么都要确认版本号,不同的版本号下会有各种差异。>Select version(数据库
slow_launch_time:表示如果建立线程花费了比这个值更长的时间,slow_launch_threads 计数器将增加
使⽤ EXPLAIN 判断 SQL 语句是否合理使用索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。
MySQL 临时表分为两种:外部临时表、内部临时表。用户通过 CREATE TEMPORARY TABLE 创建的是外部临时表。SQL 语句执行过程中 MySQL 自行创建的是内部临时表,explain 输出结果的 Extra 列出现了 Using temporary 就说明 SQL 语句执行时使用了内部临时表。
在一次和技术大佬的聊天中被问到,平时我是怎么做Mysql的优化的?在这个问题上我只回答出了几点,感觉回答的不够完美,所以我打算整理一次SQL的优化问题。
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。
在这个例子中,9(precision)代表将被用于存储值的总的小数位数,而2(scale)代表将被用于存储小数点后的位数。
如果有多条数据需要同时插入,不要每次插入一条,然后分多次插入,因为每执行一次插入的操作,都要进行数据库的连接,多个操作就会连接多次,而一次批量操作只需要连接1次
前 言 🍉 作者简介:半旧518,长跑型选手,立志坚持写10年博客,专注于java后端 🍌 专栏简介:mysql进阶,主要讲解mysql数据库进阶知识,包括索引、分库分表等 🌰 文章简介:本文将介绍索引的分类、创建、删除,Mysql8.0中索引的新特性,索引的设计原则 🍎 三连、互关必回,不回可私信哟 🥛 相关链接:大厂SQL面试真题大全 1、索引的声明与使用 1.1. 索引的分类 先介绍下索引的分类,方便后续介绍索引的创建与设计。 按照功能逻辑划分,索引主要有:普通索引、唯一索引、主键索引、全
昨天跟同事聊起数据表性能的问题,能不能仅用覆盖索引实现数据的汇总统计。找了一个开发环境已有的数据表进行测试,通过explain命令,能看到mysql通过覆盖索引就能实现sum的需求,而无须去读取实际行数据。
介绍 在数据库运维过程中,优化 SQL 是 DBA 团队的日常任务。例行 SQL 优化,不仅可以提升程序性能,还能够降低线上故障的概率。 目前常用的 SQL 优化方式包括但不限于:业务层优化、SQL逻辑优化、索引优化等。其中索引优化通常通过调整索引或新增索引从而达到 SQL 优化的目的。索引优化往往可以在短时间内产生非常巨大的效果。如果能够将索引优化转化成工具化、标准化的流程,减少人工介入的工作量,无疑会大大提高DBA的工作效率。 SQLAdvisor 是由美团点评公司北京DBA团队开发维护的 SQL 优化
后端程序员在面试中,经常会被问到SQL调优的操作,于是我也是去补习了一下这方面的知识,感谢各方大佬提供的点子,这里总结如下。
领取专属 10元无门槛券
手把手带您无忧上云