码农架构的读者应该注意到上个周末有分享一篇文章:一个几乎每个系统必踩的坑儿:访问数据库超时,最后对于怎么避免写出慢SQL没有过多赘述,但实际上这个问题我们经常遇到。我们不能等着系统上线,慢 SQL 吃光数据库资源之后,再找出慢 SQL 来改进,那样就晚了。那么,怎样才能在开发阶段尽量避免写出慢 SQL 呢?
在 InnoDB 中,从二级索引回到主键索引查询数据,这个过程称作回表过程,而且这个回表过程是可以被优化的,这个优化就是利用覆盖索引。
这样写看起来很正常,但实际在数据量大了之后,使用起来开始出现问题,越来越慢,慢到不可接受,甚至影响其他的读写操作。
哈喽,我是狗哥。小伙伴都知道我最近换工作了,薪资、工作内容什么的都是我比较满意的。五月底也面试了有 6、7 家公司,应该拿了有 5 个 offer。这段时间也被问了很多面试题,我打算写一个专题分享出来,希望对你们有所帮助~
好久没写文章了,今天回来重操旧业。 今天讲的这个主题,是《面试官:谈谈你对mysql索引的认识》,里头提到的一个坑。
首先对于熟悉Oracle 的DBA 来说,hash join并不陌生,尤其涉及到多个表join时 执行计划出现 hash join ,一般来说hash join的执行效率是比 Nest Loop 要好。运维MySQL 之后DBA也对MySQL 提出支持hash join的诉求。MySQL 在8.0.18 版本终于支持hash join了。那么什么是hash join呢?
相信每个人在写代码时都有遇到过要获取MYSQL表里数据行数的情况,多数人获取数据表行数时都用COUNT(*),但同时也流传了不少其他方式,比如说COUNT(1)、COUNT(主键)、COUNT(字段)。到底哪种方式MYSQL执行起来更快也是众说纷纭,其实之前我也不知道到底哪个执行起来快,到底谁说的对(笑哭)。好在最近在认真学习极客时间的MySQL专栏,其中专门有一节是对这个问题的讨论,看完后也是解除了长久以来的疑惑。
在整个计算机运行系统里,Cpu,内存,和磁盘主要的性能瓶颈是卡在了读取数据中,Mysql索引的优化主要在减少磁盘I/O操作中,这篇博客中详细讲解了二叉树结构,以及BTree作为Mysql索引结构的根本原理,文章底部留下来几个常用的问题。
本文是 MySQL 简单查询语句执行过程分析 6 篇中的第 2 篇,第 1 篇请看这里: MySQL 简单查询语句执行过程分析(一)词法分析 & 语法分析
介绍了为什么MySQL使用B+TREE 而 MongoDB使用B-TREE
一、前言 这个问题是博主去年面试的时候被大佬问过的问题,当时也不大清楚里面的原理,硬着头皮回答的,当然,最终面试也没过,哈哈。最近刚好研究了这块的一些东西,就有种恍然大悟的感觉,这里分享给大家,欢迎拍砖~
统计数据的需求在我们日常开发中是非常容易遇到了,MySQL也支持多种的计算的函数,
印象中网上有些“XX 面试官”系列的网文也有过类似问题的讨论,那 MySQL 统计数据总数 count(*) 、count(1)和count(列名) 哪个性能更优呢?今天我们就来聊一聊这个问题。
如何加快查询,最直接有效的办法就是增加索引,在不使用索引的情况下试图采用其他方式加快查询就是在浪费时间。本文先介绍下MySQL索引的基本数据结构,再对索引的基本规则做下总结。
基于哈希表实现。存储引擎会对所有的列计算一个哈希码, Hash索引将所有的哈希码存储在索引中,同时在索引表中保存指向每个数据行的指针
Hash Join作为表连接的基础连接类型,各大关系型数据库(譬如Oracle、sqlserver、Postgres等)很早都支持了Hash Join这种连接类型。作为关系型数据库领域的领袖,Oracle数据库支持三种主流的连接类型:Nested Loop Join、Hash Join 和 Sort Merge Join。而作为最流行的关系型数据库的MySQL 却一直没有支持Hash Join,这点一直为人诟病。千呼万唤始出来,MySQL 8.0.18开始终于支持了Hash Join的连接算法。MySQL 8.0 的所有新特性中,Hash Join 曾经最让我期待的一个新特性。
count(*) 和count(1) 都是统计行数,而count(col) 是统计col列非null的行数
本节介绍如何自己DIY一个数据库管理工具,可以在页面输入sql 进行简单的增删改查操作。 首先,找到xampp的安装目录,打开htdocs: 新建一个php文件,名称为 mysqladmin.php
背景 1. MySQL执行流程 MySQL的执行过程包括多个子阶段:语法分析、语义检查、逻辑优化、物理优化和执行。其中逻辑优化和物理优化统称为查询优化。一个查询优化器的输入是查询树,输出是查询执行计划。 逻辑优化也称为基于规则的查询优化(Rule Based Optimization,简称RBO)。主要是对查询进行逻辑上的等价变换,目的是通过这些变换提高查询的性能。 物理优化也称为基于代价的查询优化(Cost-based Optimization,简称CBO)。主要是通过一些模型,预测一个查询使用某种
over_clause 表示 COUNT 以窗口函数工作,MySQL 8.0 开始支持,这个不在本文展开,感兴趣的同学请参考 Section 14.20.2, “Window Function Concepts and Syntax”。
最近学习极客时间的MySQL45讲,补充下对于MySQL方面的知识,也在这里把自己之前的疑惑问题记录下来,从中寻找答案。由于InnoDB为常用引擎,以下分期默认都是InnoDB场景。
提示:公众号展示代码会自动折行,建议横屏阅读 1. 背景 1.1. MySQL执行流程 MySQL的执行过程包括多个子阶段:语法分析、语义检查、逻辑优化、物理优化和执行。其中逻辑优化和物理优化统称为查询优化。一个查询优化器的输入是查询树,输出是查询执行计划。 逻辑优化也称为基于规则的查询优化(Rule Based Optimization,简称RBO)。主要是对查询进行逻辑上的等价变换,目的是通过这些变换提高查询的性能。 物理优化也称为基于代价的查询优化(Cost-based Optimizatio
left join在我们使用mysql查询的过程中可谓非常常见,比如博客里一篇文章有多少条评论、商城里一个货物有多少评论、一条评论有多少个赞等等。但是由于对join、on、where等关键字的不熟悉,有时候会导致查询结果与预期不符,所以今天我就来总结一下,一起避坑。
我是林晓斌,今天作为【迪B课堂】的客串嘉宾来跟大家分享:当索引存储顺序和order by不一致,该怎么办?
用户表联合索引(name, age)为例,现在需检索表中“名字第一个字是张,且年龄是10的所有男孩”:
大多数人,都会开两个窗口,分别起两个事务,然后 update 同一条记录,在发起第二次 update 请求时,block,这样就说明这行记录被锁住了:
Q 题目 MySQL支持哪几类分区表? A 答案 表分区是指根据一定规则,将数据库中的一张表分解成多个更小的,容易管理的部分。从逻辑上看,只有一张表,但是底层却是由多个物理分区组成,每个分区都是一个独立的对象。分区有利于管理大表,体现了“分而治之”的理念。一个表最多支持1024个分区。 在MySQL 5.6.1之前可以通过命令“show variables like '%have_partitioning%'”来查看MySQL是否支持分区。若have_partintioning的值为YES,则表示支持分
我们知道mysql没有hash join,也没有merge join,所以在连接的时候只有一种算法nest loop join,nl join使用驱动表的结果集作为外表到内表中查找每一条记录,如果有索引,就会走索引扫描,没有索引就会全表扫。
首先需要澄清的一点是,MySQL 跟 B+ 树没有直接的关系,真正与 B+ 树有关系的是 MySQL 的默认存储引擎 InnoDB,MySQL 中存储引擎的主要作用是负责数据的存储和提取,除了 InnoDB 之外,MySQL 中也支持 MyISAM 作为表的底层存储引擎。
关于In与Exists的比较,先说结论,归纳出IN 和Exists的适用场景: 1)IN查询在内部表和外部表上都可以使用到索引。 2)Exists查询仅在内部表上可以使用到索引。 3)当子查询结果集很大,而外部表较小的时候,Exists的Block Nested Loop(Block 嵌套循环)的作用开始显现,并弥补外部表无法用到索引的缺陷,查询效率会优于IN。 4)当子查询结果集较小,而外部表很大的时候,Exists的Block嵌套循环优化效果不明显,IN 的外表索引优势占主要作用,此时IN的查询
本来这篇文章我前两个星期就打算写了,提纲都列好了,但是后面我去追《漫长的季节》这部剧去了,这就花了一个周末的时间,再加上后面一些其它的事,导致没来得及写
大家有没有遇到过慢查询的情况,执行一条SQL需要几秒,甚至十几、几十秒的时间,这时候DBA就会建议你去把查询的 SQL 优化一下,怎么优化?你能想到的就是加索引吧?
原文链接:https://segmentfault.com/a/1190000020458807
上周在公司做了针对MySQL 8.0新特性相关的分享,提到MySQL 8.0新特性,不得不提到的就是HashJoin,MySQL一直被人诟病没有实现HashJoin,从8.0.18已经带上了这个功能,令人欣喜。有时候在想,MySQL为什么一直不支持HashJoin呢?可能是因为MySQL多用于简单的OLTP场景,并且在互联网应用居多,需求没那么紧急。另一方面在8.0.18之前,MySQL只支持Nest Loop Join算法,MySQL针对这个算法做了若干优化,实现了Block NestLoop Join,Index NestLoop Join等,有了这些优化,在一定程度上能缓解对HashJoin的迫切程度。本文会介绍HashJoin的原理以及在使用和不使用HashJoin的情况下,性能的差异。
关于MySQL 的 join,大家一定了解过很多它的“轶事趣闻”,比如两表 join 要小表驱动大表,阿里开发者规范禁止三张表以上的 join 操作,MySQL 的 join 功能弱爆了等等。这些规范或者言论亦真亦假,时对时错,需要大家自己对 join 有深入的了解后才能清楚地理解。
MySQL 锁机制是数据库管理系统中用于协调多个用户同时访问和修改数据的方式,以确保数据的一致性和完整性。MySQL 锁机制主要包括以下三种类型:记录锁、间隙锁和临键锁。
点击上方蓝字每天学习数据库 我是林晓斌,今天作为【迪B课堂】的客串嘉宾来跟大家分享:当索引存储顺序和order by不一致,该怎么办? 林晓斌 林晓斌,网名丁奇,腾讯云数据库负责人,数据库领域资深技术专家。作为活跃的MySQL社区贡献者,丁奇专注于数据存储系统、MySQL源码研究和改进、MySQL性能优化和功能改进,在业务场景分析、系统瓶颈分析、性能优化方面拥有丰富的经验。其创作的《MySQL实战45讲》专栏受众已逾2万人。 根据指定的字段排序来显示结果,是我们写应用时最常见的需求之一了,比如一个交
主要是解决读数据从Redis缓存,一旦涉及到数据更新:数据库和缓存更新,就容易出现缓存(Redis)和数据库(MySQL)间的数据一致性问题。
今天有人跟我讲 MySQL 中 count(1) 比 count(*) 快,这能忍?必须得和他掰扯掰扯。
内容为慕课网的《高并发 高性能 高可用 MySQL 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节的内容是对于InnoDb的存储结构进阶了解,同时介绍为什么会使用B+索引作为最终数据结构,但是实际上InnoDb在具体实现中也并没有完全遵循B+的格式,而是在内部做了很多“手脚”,这也是所谓理论和实践之间的差异。
前面其实写了好几篇关于 mysql 索引的文章了,文章中有具体的实例和 sql 语句,这篇文章我想再用纯大白话讲讲 mysql 索引,文中不涉及具体 sql 。
大家好,我渣渣烟。我曾经写过一篇《面试官:讲讲mysql表设计要注意啥》,当时写完后,似乎效果还行!
索引是加速数据库查询的关键。在设计表结构时,应该根据查询的需求添加合适的索引。常用的索引包括主键、唯一索引、普通索引、联合索引、前缀索引(vachar、text这种长的数据并且只需要前几个区分度就很高)等。
索引在数据库中可以说是相当重要的一块知识点了,也是面试经常被问的,这篇文章就总结一下索引相关的知识点,包括索引的底层实现原理,索引的分类,最左匹配原则等。
领取专属 10元无门槛券
手把手带您无忧上云