在 SQL 优化中,索引是至关重要的一环,能给查询效率带来质的飞跃,但是索引并不是万能的,不合理的索引设计甚至会拖慢查询效率。本文将详细介绍索引的概览和分类,并讨论使用索引时应该权衡的要素,关于索引底层实现的内容将在下一篇文章 MySQL 索引结构 中介绍。
1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下: ●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。 ●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。 ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”
在Elasticsearch下,一个文档除了有数据之外,它还包含了元数据(Metadata)。每创建一条数据时,都会对元数据进行写入等操作,当然有些元数据是在创建mapping的时候就会设置,
本文介绍了如何利用ELK(Elasticsearch、Logstash、Kibana)技术搭建日志分析平台,以及该平台的一些重要组件和架构设计。同时,还探讨了如何使用Filebeat进行日志收集和传输,以及自研程序如何与ELK集成。
在前面的章节中,我们已经学习了Mybatis基本的增删改查操作,并且通过ResultMap将查询结果映射为Java对象。但是,对于Insert操作而言,我们通常需要获取新插入记录的自增索引值,以便于后续的操作和处理。
1、哈希索引是基于哈希表的实现,只有精确匹配索引所有列的查询才有效。不能使用范围查找,在MySQL中,只有memory存储引擎才显式支持哈希索引。
当在很长的字符串的字段上创建索引时,索引会变得很大而且低效,一个解决办法是 crc32 或 md5 函数对长字符串进行哈希计算,然后在计算的结果上创建索引。在 MySQL 5.7 以后的版本,可以创建一个自动生成的字段,例如可以创建下面一个表:
比较规范的数据库表设计(包括我们公司)都会有一条不成文的规定,那就是给每张表一个自增主键。那么自增主键除了有数据的唯一性外,还有什么所用呢?为什么要有自增主键?
2021年, 国内各路论坛已经铺满屠龙宝刀点击就送的广告, 知乎这种传统的知识社区也完全沦陷, 无论是内容质量还是产品设计都大不如前
当前,各大云厂商均推出了Elasticsearch的云上托管服务,并通过提供运维管理、监控告警、日志查看等工具,方便用户进行集群的管理与维护。但在数据接入方面,腾讯云 Elasticsearch Service(ES)在实践中发现,用户仍需单独打通每一个组件的上下游,最终完成整个链路的创建,而数据链路涉及数据源配置、数据采集、数据缓存、数据加工、数据目的等复杂的流程,每一步都需要单独配置的情况下,用户接入以及运维的成本较高。 基于此,腾讯云ES推出了一站式的数据链路可视化接入服务,相对于传统的数据接入,数
用户从 Lambda 架构入手,将数据管道拆分为批处理链路和流处理链路。对于实时数据流,他们应用 Flink CDC ;对于批量导入,他们结合了 Sqoop、Python 和 DataX 来构建自己的数据集成工具,名为 Hisen。
如果是保存不重要的数据可以使用RDB方式(比如缓存数据),如果是保存很重要的数据就要使用AOF,但是两种方式也可以同时使用。
Elasticsearch(ES) 是一个基于 Apache Lucene 开源的分布式、高扩展、近实时的搜索引擎,主要用于海量数据快速存储,实时检索,高效分析的场景。通过简单易用的 RESTful API,隐藏 Lucene 的复杂性,让全文搜索变得简单。
ElasticSearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。主要负责将日志索引并存储起来,方便业务方检索查询。
前面说了innoDB表在mysql5.6.6之前存储在系统空间,5.6.6之后存储在独立的空间,表结构存储在.frm文件,里面记录着字符集,行规则等,表数据存储在.ibd里面,里面存储着数据和索引。
Pandas 是基于 NumPy 的一个非常好用的库,正如名字一样,人见人爱。之所以如此,就在于不论是读取、处理数据,用它都非常简单。昨天介绍了 最常见的Pandas数据类型Series的使用,今天讲的Pandas的另一个最常见的数据类型DataFrame的使用。
MySQL 作为最流行的开源数据库,在各个领域都有相当广泛的应用,作为一个 MySQL DBA,经常会对数据库进行一些性能测试来主动(或者是被动的)对业务压力做一个评估,来判断数据库当前的负载以及最高的性能容量。
不啰嗦,直接入正题。问题是这样的。请问下面的sql语句,要想加快查询速度,该怎么创建索引?以下,以mysql数据库为准。
MySQL的索引分类问题一直让人头疼,几乎所有的资料都会给你列一个长长的清单,给你介绍什么主键索引、单值索引,覆盖索引,自适应哈希索引,全文索引,聚簇索引,非聚簇索引等……给人的感觉就是云里雾里,好像MySQL索引的实现方式有很多种,但是都没有一个清晰的分类。所以本人尝试总结了一下如何给MySQL的索引类型分类,便于大家记忆,由于MySQL中支持多种存储引擎,在不同的存储引擎中实现略微有所差距,下文中如果没有特殊声明,默认指的都是InnoDB存储引擎。
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
Log日志,不论对开发者自身,还是对软件系统乃至产品服务都是非常重要的事情。每个开发者都接触过日志,以至于每个人对日志的了解都会有所不同。
MySQL在使用LIKE进行模糊匹配查询的时候,字段索引会失效,因此在数据量较大的情况下,LIKE查询效率极低,就可以使用全文索引(FullText)进行优化。
除了获取Generative AI和JavaScript的支持外,甲骨文的MySQL HeatWave“另一个数据库”还获取了数据湖仓库、机器学习、AutoPilot、分析、OLTP和多云等一系列强大的新功能。
在Twitter上看到Dave Cheney提了个pop quiz 勾起了我的好奇心,可以猜下下面这段代码的运行结果。 package main import "fmt" func main() { a := [...]int{5, 4: 1, 0, 2: 3, 2, 1: 4} fmt.Println(a) } go run 一下结果就出来了 但是比较有意思的是结果是 [5 4 3 2 1 0] 下面就一步步地分析是什么情况 [number:value] 在go的数组中代表的是在索引未numbe
JSON 字段类型在当前的版本中自身没有索引,那么在生产中是非常可怕的,JSON 字段的增、删、改、查效率可想而知,基本没法用,也许是基于此,MySQL5.7 中提供了 Generated 字段类型,网上有叫生成列或是计算列的。这里先来了解一下什么是 Generated Column。
在MySQL中设计表的时候,MySQL官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
Mysql 数据库中,最常用的两种引擎是 innordb 和 myisam。InnoDB 是 Mysql 的默 认存储引擎。
聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。 不同的存储引擎有着不同的实现方式,对于 InnoDB,聚簇索引意味着将 B-Tree 索引与数据行存储在同一个结构中。 “聚簇”指的就是数据行和相邻的键值紧凑的存储在一起。 因为每一个行都只能存储在唯一的地方,所以一个表只能有一个聚簇索引。
我们前几篇讲了索引是什么,如何使用explain分析索引使用情况,如何去优化索引,以及show profiles分析SQL语句执行资源消耗的学习。今天我们来讲讲MySQL的各种锁,这里存储引擎我们使用InnoDB
主键(primary key),一列 (或一组列),其值能够唯一区分表中的每个行。唯一标识表中每行的这个列(或这组列)称为主键。主键用来表示一个特定的行。没有主键,更新或删除表中特定行很困难,因为没有安全方法保证只涉及相关的行而不误伤其他行!
导语 | 随着业务的发展,系统日益复杂,功能愈发强大,用户数量级不断增多,设备cpu、io、带宽、成本逐渐增加,当发展到某个量级时,这些因素会导致系统变得臃肿不堪,服务质量难以保障,系统稳定性变差,耗费相当的人力成本和服务器资源。这就要求我们:要有勇气和自信重构服务,提供更先进更优秀的系统。文章作者:刘敏,腾讯基础架构研发工程师。 前言 自今年三月份以来天机阁用户数快速上涨,业务总体接入数达到1000+,数据进入量更是迎来了爆发式上涨,日均处理量上涨了一个数量级:Trace数据峰值处理量达到340亿/日条
导语 | 随着业务的发展,系统日益复杂,功能愈发强大,用户数量级不断增多,设备cpu、io、带宽、成本逐渐增加,当发展到某个量级时,这些因素会导致系统变得臃肿不堪,服务质量难以保障,系统稳定性变差,耗费相当的人力成本和服务器资源。这就要求我们:要有勇气和自信重构服务,提供更先进更优秀的系统。
前一节我们学习了CodeWave的页面布局和页面呈现,现在我们已经可以通过CodeWave进行简答的页面搭建了,本节我们开始学习数据模型的构建以及通过数据模型进行相关页面开发的功能。
InnoDB有两大类索引,一类是聚集索引(Clustered Index),一类是普通索引(Secondary Index)。
对于大模型是如何训练生成的问题,相信大家对其背后原理以及训练方式已研究颇多,司内也有很多同学从专业的视角撰写了很多深度好文进行分享,让人受益颇多,例如:《用人话详解语言大模型》
大家对 MySQL 的存储结构应该是很清楚的,所以咱们在学习 ES 存储结构时,同时类比 MySQL,这样理解起来会更透彻。MySQL 的数据模型由数据库、表、字段、字段类型组成,自然 ES 也有自己的一套存储结构。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?关注公种浩:程序员追风,回复012获取一套500多页PDF总结的MySQL学习笔记。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
良好的设计是高性能的基石,应该根据系统的实际业务需求、使用场景进行设计、优化、再调整,在这其中往往需要权衡各种因素,例如,数据库表究竟如何划分、字段如何选择合适的数据类型等等问题。
第七章 商用短链平台实战-账号微服务+流量包设计 第1集 账号微服务和流量包数据库表+索引规范讲解《上》 简介:账号微服务和流量包数据库表+索引规范讲解 短链平台大课难度层级曲线图:由浅入深 索引规范 主键索引名为 pk_字段名; pk即 primary key; 唯一索引名为 uk_字段名;uk 即 unique key 普通索引名则为 idx_字段名;idx 即index 的简称 account表 CREATE TABLE `account` ( `id` bigint unsig
以下是针对mysql的知识点整理,用于复习,主要以罗列为主,详细具体讲解可以参考书《高性能mysql》,你可以过一遍看看有无知识点遗漏。
普通索引: 即针对数据库表创建索引; 唯一索引: 与普通索引类似,不同的就是:MySQL数据库索引列的值必须唯一,但允许有空值; 主键索引: 它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引; 组合索引: 为了进一步榨取MySQL的效率,就要考虑建立组合索引。即将数据库表中的多个字段联合起来作为一个组合索引。
InnoDB是目前MySQL主流版本(5.6、5.7、8.0)默认的存储引擎,支持事务、外键、行级锁,对于并发条件下要求数据的一致性,适用于对数据准确性要求高的场景。
在MySQL 3.23.44版本后,InnoDB引擎类型的表支持了外键约束。 外键的使用条件: 1.两个表必须是InnoDB表,MyISAM表暂时不支持外键(据说以后的版本有可能支持,但至少目前不支持); 2.外键列必须建立了索引,MySQL 4.1.2以后的版本在建立外键时会自动创建索引,但如果在较早的版本则需要显示建立; 3.外键关系的两个表的列必须是数据类型相似,也就是可以相互转换类型的列,比如int和tinyint可以,而int和char则不可以; 外键的好处:可以使得两张表关联,保证数据的一致性
随着大模型的发布迭代,大模型变得越来越智能,在使用大模型的过程当中,遇到极大的数据安全与隐私挑战。在利用大模型能力的过程中我们的私密数据跟环境需要掌握自己的手里,完全可控,避免任何的数据隐私泄露以及安全风险。基于此,我们发起了DB-GPT项目,为所有以数据库为基础的场景,构建一套完整的私有大模型解决方案。此方案因为支持本地部署,所以不仅仅可以应用于独立私有环境,而且还可以根据业务模块独立部署隔离,让大模型的能力绝对私有、安全、可控。
领取专属 10元无门槛券
手把手带您无忧上云