最近,又遇到了慢 SQL,简单的看了下,又是因为 MySQL 本身优化器还有查询计划估计不准的问题。SQL 如下:
在MySQL8.0以前,通常会通过infomation_schema的表来获取一些元数据,例如从tables表中获取表的下一个auto_increment值,从indexes表获取索引的相关信息等。
这是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。这里,用一个算 count(*) 的例子来为你解释一下。
日常开发中,获取数据的总数是很常见的业务场景,但是我们发现随着数据的增长count(*)越来越慢,这个是为什么呢,
MySQL的査询优化器会通过两个API来了解存储引擎的索引值的分布信息,以决定如何使用索引。第一个API是 records_in_range(),通过向存储引擎传入两个边界值获取在这个范围大概有多少条记录。对于某些存储引擎,该接口返回精确值,例如MyISAM;但对于另一些存储引擎则是一个估算值,例如 InnoDB。 第二个API是info(),该接口返回各种类型的数据,包括索引的基数(每个键值有多少条记录)。 如果存储引擎向优化器提供的扫描行数信息是不准确的数据,或者执行计划本身太复杂以致无法准确地获取各个阶段匹配的行数,那么优化器会使用索引统计信息来估算扫描行数。 MySQL优化器使用的是基于成本的模型,而衡量成本的主要指标就是一个查询需要扫描多少行。如果表没有统计信息,或者统计信息不准确,优化器就很有可能做出错误的决定。可以通过运行ANALYZE TABLE来重新生成统计信息解决这个问题。 每种存储引擎实现索引统计信息的方式不同,所以需要进行ANALYZE TABLE的频率也因不同的引擎而不同,每次运行的成本也不同:
在做自动化运维开发过程中,需要从information_schema.tables获取MySQL表相关的元信息,发现MySQL8.0和5.7存在的差异还是比较大的;在MySQL8.0以前,通常会通过infomation_schema的表来获取一些元数据,例如从tables表中获取表的下一个auto_increment值,从indexes表获取索引的相关信息等。
最近在极客时间看丁奇大佬的《MySQL45讲》,真心觉得讲的不错,把其中获得的一些MySQL方向的经验整理整理分享给大家,有兴趣同学可以购买相关课程进行学习。
MySQL执行SQL会经过SQL解析和查询优化的过程,解析器将SQL分解成数据结构并传递到后续步骤,查询优化器发现执行SQL查询的最佳方案、生成执行计划。查询优化器决定SQL如何执行,依赖于数据库的统计信息,下面我们介绍MySQL 5.7中innodb统计信息的相关内容。
前面我们介绍过索引,你已经知道了在 MySQL 中一张表其实是可以支持多个索引的。但是,你写 SQL 语句的时候,并没有主动指定使用哪个索引。也就是说,使用哪个索引是由 MySQL 来确定的。
schema就是数据库对象的集合,这个集合包含了各种对象如:表、视图、存储过程、索引等。为了区分不同的集合,就需要给不同的集合起不同的名字,默认情况下一个用户对应一个集合,用户的schema名等于用户名,并作为该用户缺省schema。所以schema集合看上去像用户名。
https://blog.csdn.net/sinat_39620217/article/details/134011021
MySQL会在某些情况下选择错误索引导致查询性能下降。例如不断地删除历史数据和新增数据的场景。
本文是在假定读者了解了直方图是什么,直方图如何进行添加维护的前提下,围绕直方图与索引的对比、何时应该添加直方图,及直方图如何帮助优化器选择更优的执行计划这几个方面来介绍直方图。 对直方图不太了解的小伙伴可参考GreatSQL社区的另一篇文章 4.直方图介绍和使用|MySQL索引学习
哈喽,我是狗哥。小伙伴都知道我最近换工作了,薪资、工作内容什么的都是我比较满意的。五月底也面试了有 6、7 家公司,应该拿了有 5 个 offer。这段时间也被问了很多面试题,我打算写一个专题分享出来,希望对你们有所帮助~
有赞使用storm已经有将近3年时间,稳定支撑着实时统计、数据同步、对账、监控、风控等业务。订单实时统计是其中一个典型的业务,对数据准确性、性能等方面都有较高要求,也是上线时间最久的一个实时计算应用。通过订单实时统计,描述使用storm时,遇到的准确性、性能、可靠性等方面的问题。 订单实时统计的演进 第一版:流程走通 在使用storm之前,显示实时统计数据一般有两种方案: 在数据库里执行count、sum等聚合查询,是简单快速的实现方案,但容易出现慢查询。 在业务代码里对统计指标做累加,可以满足指标的快速查
作者:matrix 被围观: 224 次 发布时间:2021-12-28 分类:mysql PHP | 无评论 »
在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多 SQL 语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的 SQL 就是整个系统性能的瓶颈。
---- 文章来源:https://c1n.cn/tEsnA 前言 在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多 SQL 语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的 SQL 就是整个系统性能的瓶颈。 SQL 优化一般步骤 | 通过慢查日志等定位那些执行效率较低的 SQL 语句 | explain 分析SQL的执行计划 需要重点关注 type、rows、filtered、extra。 type 由上至下,效率越来越高: ALL 全表扫描
虽然上至下,效率越来越高,但是根据cost模型,假设有两个索引idx1(a, b, c),idx2(a, c),SQL为select * from t where a = 1 and b in (1, 2) order by c;如果走idx1,那么是type为range,如果走idx2,那么type是ref;当需要扫描的行数,使用idx2大约是idx1的5倍以上时,会用idx1,否则会用idx2
非持久化统计信息的缺点显而易见,数据库重启后如果大量表开始更新统计信息,会对实例造成很大影响,所以目前都会使用持久化统计信息。 2、持久化统计信息在以下情况会被自动更新:
MySQL中的索引可以使用多种数据结构实现,包括B+树、哈希表、红黑树等。本文将对几种常见的数据结构进行对比分析。
哈喽,小伙伴们好呀,我是狗哥。我们在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多 SQL 语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的 SQL 就是整个系统性能的瓶颈。
COUNT(1) 和 COUNT(*) 表示的是直接查询符合条件的数据库表的行数。而 COUNT(列名) 表示的是查询符合条件的列的值不为 NULL 的行数。
3、show profile 分析 了解SQL执行的线程的状态及消耗的时间。 默认是关闭的,开启语句“set profiling = 1;” SHOW PROFILES ; SHOW PROFILE FOR QUERY #{id}; 4、trace trace分析优化器如何选择执行计划,通过trace文件能够进一步了解为什么优惠券选择A执行计划而不选择B执行计划。 set optimizer_trace="enabled=on"; set optimizer_trace_max_mem_size=1000000; select * from information_schema.optimizer_trace; 5、确定问题并采用相应的措施
关于In与Exists的比较,先说结论,归纳出IN 和Exists的适用场景: 1)IN查询在内部表和外部表上都可以使用到索引。 2)Exists查询仅在内部表上可以使用到索引。 3)当子查询结果集很大,而外部表较小的时候,Exists的Block Nested Loop(Block 嵌套循环)的作用开始显现,并弥补外部表无法用到索引的缺陷,查询效率会优于IN。 4)当子查询结果集较小,而外部表很大的时候,Exists的Block嵌套循环优化效果不明显,IN 的外表索引优势占主要作用,此时IN的查询
在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多SQL语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的SQL就是整个系统性能的瓶颈。
点击关注公众号,Java干货及时送达 作者:狼爷 来源:www.cnblogs.com/powercto/p/14410128.html 一、前言 在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多SQL语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的SQL就是整个系统性能的瓶颈。 二、SQL优化一般步骤 1、通过慢查日志等定位那些执行效率较低的SQL语句 2、explain 分析SQL的执行计划 需要重点关注type、rows、filtere
在开发系统的时候,你可能经常需要计算一个表的行数,比如一个交易系统的所有变更记录总数。这时候你可能会想,一条 select count(*) from t 语句不就解决了吗?
墨墨导读:MySQL 8.0 新功能直方图,继承于Oracle ,MairaDB的实现方式。本文从MySQL角度解释,直方图是什么。
一般现在对于业务要查询的数据量以及要保持的并发量高于一定配置的单实例 MySQL 的极限的情况,都会采取分库分表的方案解决。当然,现在也有很多 new SQL 的分布式数据库的解决方案,如果你用的是 MySQL,那么你可以考虑 TiDB(实现了 MySQL 协议,兼容 MySQL 客户端以及 SQL 语句)。如果你用的是的 PgSQL,那么你可以考虑使用 YugaByteDB(实现了 PgSQL 协议,兼容 PgSQL 客户端以及 SQL 语句),他们目前都有自己的云部署解决方案,你可以试试:
4). 数仓架构分层:一般分为操作数据层(ODS)、公共维度模型层(CDM)和应用数据层(ADS),其中公共维度模型层包括明细数据层(DWD和汇总数据层(DWS)
最近刚入职新公司,发现数据库设计有点小问题,数据库字段很多没有NOT NULL,对于强迫症晚期患者来说,简直难以忍受,因此有了这篇文章。
like模糊查询形如'%AAA%'和'%AAA'将不会使用索引,但是业务上不可避免可能又需要使用到这种形式。
前言 在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多SQL语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的SQL就是整个系统性能的瓶颈。 SQL优化一般步骤 1、通过慢查日志等定位那些执行效率较低的SQL语句 2、explain 分析SQL的执行计划 需要重点关注type、rows、filtered、extra。 type由上至下,效率越来越高 ALL 全表扫描 index 索引全扫描 range 索引范围扫描,常用语<,<=,>=,betwe
背景 在一次进行SQl查询时,我试着对where条件中vachar类型的字段去掉单引号查询,这个时候发现这条本应该很快的语句竟然很慢。这个varchar字段有一个复合索引。其中的总条数有58989,甚
线上环境中,当MHA这种高可用切换服务切换的时候,往往是主库发生问题了,今天我们讨论在何种情况下,我们可以判断主库已经发生了问题,不可用了。
MySQL 因为它的可靠性、高性能和易用性,成为世界上最受欢迎的开源数据库。MySQL 专为事务处理而设计和优化,全球的企业都依赖于MySQL。随着在 MySQL 数据库服务中引入 HeatWave,客户现在拥有一个可以同时进行事务处理和分析处理的单一数据库。它消除了分析处理数据库的 ETL 的需求,并为实时分析提供支持。HeatWave 建立在创新的内存查询引擎之上,该引擎专为可扩展性和性能而设计,并针对云进行了优化。MySQL HeatWave 服务比其他数据库服务(Snowflake、Redshift、Aurora、Synapse、Big Query)更快,而且成本只是其一小部分。
使用 select count() from t。计算一个表的行数,比如一个交易系统的所有变更记录总数。随着系统中记录数越来越多,这条语句执行得也会越来越慢。然后你可能就想了,MySQL 怎么这么笨啊,记个总数,每次要查的时候直接读出来,不就好了吗。那么今天,我们就来聊聊 count() 语句到底是怎样实现的,以及 MySQL 为什么会这么实现。然后,我会再和你说说,如果应用中有这种频繁变更并需要统计表行数的需求,业务设计上可以怎么做。
开发过程中总是纠结于count时到底是用count(列名)、 count(常量)、 count(*)其中的哪个,用哪个统计数据的效率会高些,每次开发每次去百度找前辈的经验介绍,但是每次得到的建议总是会有些差别,今天看到了一篇阿里关于count的文章,觉得挺好,在这里分享一下,顺便加上一些个人的使用建议。
不管是Oracle还是MySQL,新版本推出的新特性,一方面给产品带来功能、性能、用户体验等方面的提升,另一方面也可能会带来一些问题,如代码bug、客户使用方法不正确引发问题等等。
在MySQL中有一个配置参数eq_range_index_dive_limit,它的作用是一个等值查询(比如:in 查询),其等值条件数小于该配置参数,则查询成本分析使用扫描索引树的方式分析,如果大于等于该配置参数,则使用索引统计的方式分析。使用扫描索引树的方式分析在MySQL内部叫做index dives,使用索引统计的方式分析在MySQL内部叫做index statistics。
select id,name from product limit 866613, 20
以阿里巴巴OneData建设为例:一般分为操作数据层(ODS:Operational Data Store)、公共维度模型层(CDM)和应用数据层(ADS)。其中公共维度模型层包括明细数据层(DWD和汇总数据层(DWS)。
领取专属 10元无门槛券
手把手带您无忧上云