这里我们假定一个场景,你需要迁移CDH5.12到CDH6.2,CDH5.12和CDH6.2分别是两个不同的集群,我们的工作主要是HDFS数据和各种元数据从CDH5.12迁移到CDH6.2,本文不讨论HDFS数据的迁移也不讨论其他元数据的迁移比如CM或Sentry,而只关注Hive元数据的迁移。这里的问题主要是CDH5.12的Hive为1.1,而CDH6.2中Hive已经是2.1.1,Hive的大版本更新导致保存在MySQL的schema结构都完全发生了变化,所以我们在将CDH5.12的MySQL数据导入到CDH6.2的MySQL后,需要更新Hive元数据的schema。首先Fayson会搭建2个集群包括CDH5.12和CDH6.2,为了真实,我们在接下来的模拟过程中,创建的Hive表包含分区,视图和UDF,好方便验证是否迁移到CDH6.2都能正常运行。具体如何迁移Fayson会在接下来的文章进行详细描述。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github:https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 本文主要介绍由Cloudera Manager管理的CDH集群的角色划分。实际部署你可能还需要考虑工作负载的类型和数量,真实要部署的哪些服务,硬件资源,配置,以及其他因素。当你使用Cloudera Manager的安装向导来安装CDH时,CM会根据主机的可用资源,自动的分配角色到各台主机,边
表在创建时,有分隔符属性,这个分隔符属性,代表在执行MR程序时,使用哪个分隔符去分割每行中的字段! 查看表(实际在HDFS中也是一个文件)中的所有内容(包括分隔符):
在前面Fayson介绍了《Cloudera Navigator介绍与安装》,本篇文章主要介绍Navigator的四大核心功能,元数据搜索、数据溯源、审计以及数据生命周期管理功能。当然Navigator还一个重要的功能就是进行数据加密,因为涉及内容较多,也稍微复杂一些,所以本文这里先不介绍,Fayson会在后面的文章单独进行说明。
无论是使用何种语言进行编程,碰到的第一个问题莫过于乱码的问题,而使用数据库的时候,也大致差不多。
在第1部分中,我们简要概述了各种协议和机制,这些协议和机制用于MySQL Cluster的数据节点和MySQL服务器的数据字典(DD)之间彼此保持同步。更具体地说,我们探讨了NDB Cluster 7.x版本中用户触发同步的实现问题。NDB Cluster 8.0中通过以下新功能解决了这些问题:自动模式同步(或简称为auto schema sync)。
Fayson在之前的文章中介绍过《CDH网络要求(Lenovo参考架构)》,《如何为Hadoop集群选择正确的硬件》和《CDH安装前置准备》,而我们在搭建Hadoop集群时,还一件很重要的事就是如何给集群分配角色。
在前面的文章《5.16.2-如何将CM内嵌PostgreSQL服务迁移至外部PostgreSQL服务》介绍了将CM内嵌的PostgreSQL迁移至外部PostgreSQL,因为CM内嵌的PostgreSQL数据库不支持直接迁移至MySQL。本篇文章Fayson主要介绍如何将集群使用的外部PostgreSQL迁移至MySQL数据库。
与8.0的每个发行版一样,MySQL Shell 8.0.19包含多个错误修复以及新功能,该版本包含了一些重大更改:
在前面的文章《6.3.0-如何将CM内嵌PostgreSQL服务迁移至外部PostgreSQL服务》介绍了将CM内嵌的PostgreSQL迁移至外部PostgreSQL,因为CM内嵌的PostgreSQL数据库不支持直接迁移至MySQL。本篇文章Fayson主要介绍如何将集群使用的外部PostgreSQL迁移至MySQL数据库。
在前面Fayson介绍了《如何实现CDH元数据库MySQL的主主互备》和《如何实现CDH元数据库MySQL的高可用》,实现了MySQL的高可用后访问地址有了变化,本篇文章主要介绍如何修改CM及CDH集群元数据库配置。
前面我所用的表hive_table其实用hive查询时查得还是hdfs上的数据,那我们用mysql到底是存储的什么,元数据到底是什么? 元数据其实是数据的类型和我们用hive怎么拆分这个表的信息的合集,比如说我去查看我的mysql上的元数据到底长什么样 (1)先进入hive数据库(此数据库事先已经创建好,在hive的配置文件中我们已经设置好,并且把密码也写在了配置文件中)
(1) 什么是数据元数据? 元数据(MetaData),是指定义数据结构的数据。那么数据库元数据就是指定义数据库各类对象结构的数据。 例如数据库中的数据库名,表明, 列名、用户名、版本名以及从SQL语句得到的结果中的大部分字符串是元数据 (2)数据库元数据的作用 在应用设计时能够充分地利用数据库元数据深入理解了数据库组织结构,再去理解数据访问相关框架的实现原理会更加容易。 (3)如何获取元数据 在我们前面使用JDBC来处理数据库的接口主要有三个,即Connection,PreparedStatement和ResultSet这三个,而对于这三个接口,还可以获取不同类型的元数据,通过这些元数据类获得一些数据库的信息。下面将对这三种类型的元数据对象进行各自的介绍并通过使用MYSQL数据库进行案例说明
2.停止Hive服务,在配置中搜索“database”,修改数据库配置到MySQL库
在前面的文章《如何将CM内嵌PostgreSQL服务迁移至外部PostgreSQL服务》介绍了将CM内嵌的PostgreSQL迁移至外部PostgreSQL,因为CM内嵌的PostgreSQL数据库不支持直接迁移至MySQL。本篇文章Fayson主要介绍如何将集群使用的外部PostgreSQL迁移至MySQL数据库。
在 Mysql 修改Hive元数据表注释和字段注释的编码为 utf-8 在Hive的元数据库(MySQL)中运行: 修改表字段注解和表注解
在《如何安装及使用Prometheus》文中有对Prometheus 做简单的介绍,并且通过node_exporter的模板示例介绍了如何监控主机信息。本文主要介绍如何使用Prometheus监控MySQL数据库信息
今天分享的主题是元数据治理实践,这是一项长期持续的工作,涉及多部门协作、多角色参与,链路长且复杂,要有完善的流程、成熟的平台、业务和技术部门共同参与,才能推进治理工作的有效展开。
问题导读 1.Atlas是什么? 2.Atlas能干什么? 3.Atlas血统关系是什么? Atlas现在被企业使用的越来越多,我们可能听说过,但是具体它是什么,能干什么的,我们可能不清楚。 因此我们要解决第一个问题,Atlas是什么? Apache Atlas是Hadoop社区为解决Hadoop生态系统的元数据治理问题而产生的开源项目,它为Hadoop生态系统集群提供了包括数据分类、集中策略引擎、数据血缘、安全和生命周期管理在内的元数据治理核心能力。 上面我们或许听着比较懵圈,都是啥,元数据治理是啥?为啥要元数据治理?元数据不就是用来描述数据的数据,我们这么理解没有错的,不过这个是其中重要的一项。比如Hive的元数据,那是需要第三方数据库的,大多存储到mysql中。为啥又出来一个Atlas,它能管理Hive的元数据吗?别说,还真可以的。那为啥要用Atlas来管理。这就涉及到我们的第二个问题,Atlas能干什么?。 Atlas能干什么? 其实很多大数据组件都有元数据管理,比如: Hive保存在外部数据库中,比如Mysql Hadoop元数据保存在Namenode,元数据的存储格式:data/hadoopdata/目录下 name:元数据存储目录 namenode存储元数据的存储目录 Kakfa元数据一般保存在zookeeper中 等等以上,我们的元数据每个大数据组件都有保存的地方,为啥还需要Atlas。 上面元数据是为了功能而生,都是单独的系统,散落在各个组件中,而我们能不能把这些元数据统一管理,而且数据的变化我们也能看到那就更好了。而且如果能把我们整个集群的大数据组件的元数据我们都能看到,那就更好了。看到这些有什么好处?比如我们想找到Hive有哪些表,想查看我们数据是怎么来的。这时候数据管理工具就产生了--Atlas,用来管理元数据的平台。 我们知道了Atlas是什么,能干什么,可能是比较通透了。可是还不够详细,那么接下来我们看看Atlas有哪些功能,有什么特点。这里直接借用《大数据治理与安全从理论到开源实践》书中内容。
编写本文主要是因为Fayson在上篇文章《0480-如何从HDP2.6.5原地迁移到CDH5.16.1》迁移失败的补充,为什么迁移失败是因为HDP2.6.5的Hadoop版本2.7.5比C5的2.6要高导致的,HDFS只支持升级,而不支持降级。
刘耀铭同学元数据系列作品的第三篇,大家支持! 今天跟大家谈谈数据库中的元数据 数据库中的元数据无非就是对数据库中数据的描述与定义。 我们先举个现实生活中的栗子,假设小明想看某个电影,但是他忘记了电影
这一期,我们通过工具来分析一下:MySQL 为什么会使用一个低效的执行计划,以致于我们不得已用 hint 来调优 SQL?
之前的文章中我们提到了Hive是Hadoop生态系统中的重要的成员之一,允许用户使用类似SQL的方式,很方便地进行离线数据的统计分析。本节我们就在Hadoop集群的基础上进行Hive的安装与配置。
在有赞大数据平台发展初期,业务量不大,开发者对业务完全熟悉,从 ETL 到统计分析都可以轻松搞定,当时没有想过要做一个元数据系统。
一、前言 在互联网时代,业务规模常常出现爆发式的增长。快速的实例交付,数据库优化以及备份管理等任务都对DBA产生了更高的要求,单纯的凭借记忆力去管理那几十套DB已经不再适用。那么如何去批量管理这些实例的备份、元数据、定时脚本和快速实例交付就成了急需解决的的问题。 二、数据库的标准化 在实现MySQL的自动化运维的过程中,最痛苦的无非是目录的不统一,配置文件的混乱以及DB主机的不标准,而这些不标准的环境会让自动化运维的路途荆棘重重。所以首先我们将相应的DB主机以及目录做了标准化,将以前不符合的标准的主机和实例
#摘要: 在实际生产环境中,如何对 Doris 的元数据进行管理。包括 FE 节点建议的部署方式、一些常用的操作方法、以及常见错误的解决方法。
Cloudera Navigator也是CDH企业版的工具之一,定位为一个数据管理工具。Hadoop大数据平台拥有存储与分析任何种类和规模数据的能力,并且将其开放给更多用户和分析工具。 但是,这同时也带来数据管理上的挑战:大量的业务用户想自助访问可发掘数据;管理员需要知道数据是怎么被用来优化分析性能的;安全团队需要看见数据的访问方式以及它们是怎么满足合规性的。一个大数据平台必须有能力在整个企业内解决数据管理以及合规性需求,但同时不能牺牲大数据本身的灵活性和优势。所以我们需要数据管理工具Navigator。
DataHub 是第三代元数据平台,支持为现代数据堆栈构建的数据发现、协作、治理和端到端可观察性。DataHub 采用模型优先的理念,重点是解锁不同工具和系统之间的互操作性。
MySQL的并发控制是在数据安全性和并发处理能力之间的权衡,通过不同的锁策略来决定对系统开销和性能的影响。
上期文档中我们让mysql开启慢查询日志,收集查询时间比较长的sql,进而通过explain指令查询sql的执行过程,explain能够查看sql是那种数据查询方式以及索引情况。但是有时候使用explain还是无法定位到问题sql,所以在mysql5.037版本之后新增了show profiles和show profile语句的支持,通过hava_profileing指令可以查看当前sql是否支持profiles。
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程。作为新一代的元数据管理平台,Datahub在近一年的时间里发展迅猛,大有取代老牌元数据管理工具Atlas之势。国内Datahub的资料非常少,大部分公司想使用Datahub作为自己的元数据管理平台,但可参考的资料太少。
安装Server和Agent 一、安装Server服务 yum install -y oracle-j2sdk1.8-1.8.0+update181-1.x86_64 yum install -y enterprise-debuginfo-6.2.1-1426065.el7.x86_64 yum install -y cloudera-manager-server-6.2.1-1426065.el7.x86_64 yum install -y cloudera-manager-server-db-2-6.2
我们在JAVA中操作数据库,无非就是JDBC,不管是MySQL还是Oracle 或者是其他数据库,基本都是通过JDBC的连接去跟数据库打交道。
Apache Hive 是基于 Apache Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并且提供了 Hive SQL 进行查询和分析,在离线数仓中被广泛使用。
hive 的下载地址为: https://archive.apache.org/dist/hive/
卸载过程1 控制台卸载 2找到mysql的安装目录 删除 3 programdata 删除mysql
hive由Facebook开源用于解决海量结构化日志的数据统计。hive是基于Hadoop的一个数据仓库工具,是基于Hadoop之上的,文件是存储在HDFS上的,底层运行的是MR程序。hive可以将结构化的数据文件映射成一张表,并提供类SQL查询功能。
有赞作为"新零售"的软件服务供应商,随着业务的不断发展,从第一批几十家商户到现在300万商家,涉及零售,美业,餐饮,自媒体等众多商家,业务规模以及访问量爆发式增长。一方面给后端数据库带来的影响是服务器数量和DB实例的数据量出现成倍增加。各种业务需求:快速交付实例,慢查询优化以及备份恢复管理等都给DBA的日常运维支持带来更高的要求。另一方面最开始以excel作为CMDB管理数据库实例的纯人肉运维又给高效的数据库运维带来阻碍。
摘要:本文介绍了韩非老师带来的 Dinky 实践系列之 Flink Catalog 元数据管理的分享。内容包括:
默认Hive中创建有中文注释的表时,无论是在Hive CLI还是Hue中该注释显示都会是乱码。如使用以下建表语句:
Fayson 在前面的文章《Hive表字段Comment中文乱码》中,介绍了在Hive中如何解决表字段中文注释乱码的问题,为了完善上篇文档,本文整理Hive表所有与中文注释相关的属性项,包括表字段、分区、表名、视图中文乱码,同时包括对该问题的分析。
change和modify都可以修改表的定义,但是change后面需要写两次列名,但是change的优点在于修改列名称,modify则不能。
锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
第一种方式: derby版hive (不推荐) 默认使用derby(数据库)维护元数据 此版本,每个节点自己独立维护一个derby数据库,所以在节点1添加了数据库,在节点2 无法查看 第一步:查看
MySQL 8.0 对数据字典进行了重构,用户表、数据字典表、MySQL 其它系统表的元数据都统一保存到 mysql 库的数据字典表中了。
继第一篇,第二篇介绍了关于元数据的一些想法,最近做了一些改进。 运维平台的建设思考-元数据管理(一) 运维平台的建设思考-元数据管理(二) 对于一部分的元数据抽取大体有下面的两种方式。假设数据源已经做
在生产环境CDH集群中会遇到元数据库的迁移,迁移后数据库的IP地址发生变化或是元数据库做主备,在主节点挂掉后,我们需要将数据库CDH集群中的元数据库地址指向新的IP或备用元数据库。本篇文章Fayson主要介绍如何修改CDH集群元数据库IP地址。
在工作中经常会碰到单独迁移、复制或者备份某一张表的需求,一般可以通过逻辑/物理备份来实现。但是在 5.6.6+ 的版本中我们还可以用到一种基于表空间迁移的快速方法,本节内容就来聊聊这一操作。
领取专属 10元无门槛券
手把手带您无忧上云