关于数据同步的方式有很多种,现在有一个场景需要将mysql数据库的数据主动同步到我们的工程中,并且能再mysql数据库客户端更改某一行的数据也能将数据同步到另一个数据库或者工程中,对于这种场景的使用我们应该怎么去实现呢?
随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。
Elasticsearch是最近几年非常热门的分布式搜索和数据分析引擎,携程内部不仅使用ES实现了大规模的日志平台,也广泛使用ES实现了各个业务场景的搜索、推荐等功能。
canal是阿里的开源框架,其优势在于可以方便地同步数据库中增量数据到其他的存储应用(MySQL、Kafka、Elastic Search、HBase、Redis等等)。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到ADB MySQL,跟大家分享一下,希望对你有帮助。
canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL(也支持mariaDB)。 canal 就是一个同步增量数据的一个工具。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到ClickHouse,跟大家分享一下,希望对你有帮助。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到DM DB 达梦数据库,跟大家分享一下,希望对你有帮助。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到ADB PostgreSQL,跟大家分享一下,希望对你有帮助。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到Greenplum,跟大家分享一下,希望对你有帮助。
Grab 是一家总部位于新加坡的东南亚网约车和送餐平台公司,业务遍及东南亚大部分地区,为 8 个国家的 350 多座城市的 1.87 亿多用户提供服务。Grab 当前提供包括网约车、送餐、酒店预订、网上银行、移动支付和保险服务。是东南亚的“美团”。Grab Engineering 分享了他们对搜索索引进行优化的方法与心得,InfoQ 中文站翻译并分享。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到 Kafka ,跟大家分享一下,希望对你有帮助。
停机迁移包括停服迁移与非停服迁移,停服迁移是选择某一时间点流量最少时停止所有服务,并在最短时间内完成数据迁移,此时需要注意停服时间;非停服迁移,即停止所有写数据服务,查询服务并不停止,同样要注意停服时间,防止对生产环境有较大影响。停机迁移完成后,还需要进行数据核对,通常首先要校验迁移前后数据量是否一致,其次还可对迁移前后数据逐条进行校验,还可进行流量回放,保证迁移前后业务表现完全一致。
在实际项目开发中,我们经常将Mysql作为业务数据库,ES作为查询数据库,用来实现读写分离,缓解Mysql数据库的查询压力,应对海量数据的复杂查询。
canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费
Springboot2.1+Solr7.5搭建的企业级搜索平台,项目目前支持文档内容和数据库检索,已经集成分词技术。支持文档内容检索类型包含:pdf、doc、docx、ppt、pptx、txt、log等 数据库已支持MySQL增量自动建立索引
有赞搜索中台作为有赞企业级搜索能力复用平台,在解决各个业务域搜索问题时是如何探索与实践的,这个过程中有哪些心得,本文与大家一起分享探讨下。
搜索中⼼化管理的⼀个⽐对就是业务侧⾃建搜索体系, 在谈谈搜索中台前先聊聊业务侧⾃建搜索带来的挑战,烟囱式的搜索体系⾯临:
TiDB Binlog(github.com/pingcap/tidb-binlog)用于收集 TiDB 的 binlog,并准实时同步给下游。 同步数据这一步重要操作由 Drainer 模块支持,它可以将 binlog 同步到 TiDB / MySQL / Kafka / File (增量备份)等下游组件。
在生产业务常有将 MySQL 数据同步到 ES 的需求,如果需要很高的定制化,往往需要开发同步程序用于处理数据。但没有特殊业务需求,官方提供的Logstash 就很有优势了。 在使用 Logstash 我们应先了解其特性,再决定是否使用:
Flink CDC [1] 是基于数据库的日志 CDC 技术,实现了全增量一体化读取的数据集成框架。配合 Flink 优秀的管道能力和丰富的上下游生态,Flink CDC 可以高效实现海量数据的实时集成。
客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票、一日游、特色体验、当地交通与美食预订服务。覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务。KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求。对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100+数据库/实例。RDS直接通过来的数据通过标准化清洗即作为数仓的ODS层,公司之前使用第三方商业工具进行同步,限制为每隔8小时的数据同步,无法满足公司业务对数据时效性的要求,数据团队在进行调研及一系列poc验证后,最后我们选择Debezium+Kafka+Flink+Hudi的ods层pipeline方案,数据秒级入湖,后续数仓可基于近实时的ODS层做更多的业务场景需求。
DDL 一向是业务的痛点,尤其是对大型表的 DDL 操作,具有操作时间久,对性能影响大,可能影响业务正常使用等问题。
本文的宗旨在于通过简单干净实践的方式教会读者,配置出一套 Canal 工具服务,来同步分库分表的数据到 Elasticsearch 文件夹系统中。同时在 SpringBoot 工程中,配置出两套数据源,一套是 MySQL + MyBatis,一套是 Elasticsearch + MyBatis。【这是非常重要的设计手段】
相当一部分应用的日志是保存在数据库之中的,这些陈旧又稳定的应用在支撑着业务的运行。它们产生的日志通常来说也是有其价值的,但是如果能够融入到目前较为通用的 Elasticsearch 当中的话,可能有助于降低运维工作量,防止信息孤岛,并且进一步挖掘既有应用和业务的商业价值。
本文详细介绍了转转业财系统亿级数据存储优化的实践。面对系统数据量大、慢查询多等挑战,转转业财采取了 TiDB 方案优化数据量问题,同时引入 Elasticsearch(ES)解决慢查询难题。实践表明,通过底层数据存储切换和 ES 接入,系统成功突破了存储瓶颈,显著提升了查询效率和响应速度,为大规模数据处理提供了有效的优化路径。
由于系统版本、数据库的升级,导致测试流程阻塞,为了保证数据及系统版本的一致性,我又迫切需要想用这套环境做性能测试,所以和领导、开发请示,得到批准后,便有了这次学习的机会,所以特此来记录下整个过程。
吴夏,腾讯云TDSQL研发工程师,目前主要负责日志解析复制、数据传输同步模块的开发工作。
在数据库的运维工作中经常会遇到业务的改表需求,这可能是DBA比较头疼的需求,其中添加唯一索引可能又是最头疼的需求之一了。
Oracle中字段、索引的使用,相对来讲,还是比较透明的,人为干涉的较少,过程相对标准,可参考历史文章,
https://www.cnblogs.com/grefr/p/6087942.html#top
OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场。作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创建、主持和盈利的活动,如健身课、音乐会、站立表演或即兴表演,以及Zoom会议平台上的音乐课程。
作者:[美]威廉·肯尼迪(William Kennedy)布赖恩·克特森(Brian
业务线与系统越来越多,系统或业务间数据同步需求也越频繁。当前互联网业务系统大多MySQL数据存储与处理方案:
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
CanalSharp是阿里巴巴开源项目mysql数据库binlog的增量订阅&消费组件 Canal 的.NET客户端,关于什么是 Canal?又能做什么?我会在后文为大家一一介绍。CanalSharp 这个项目,是由我和 WithLin (主要贡献) 完成,并将一直进行维护的Canal的.NET客户端项目。目前开源在github:https://github.com/CanalSharp/CanalSharp/ 希望大家多多支持,旨在为.NET开发者提供一个友好的对接Canal的选择,为.NET社区生态做贡献。
ClickHouse 20.8.2.3 版本新增加了 MaterializeMySQL 的 database 引擎,该 database 能 映射到 MySQL 中的某个 database ,并自动在 ClickHouse 中创建对应的ReplacingMergeTree。ClickHouse 服务做为 MySQL 副本,读取 Binlog 并执行 DDL 和 DML 请求,实现了基于 MySQL Binlog 机制的业务数据库实时同步功能。
前些天处理了一个需求,当时的数据库环境是Oracle,我算是想尽了Oracle相关的方案,而且在问题的处理过程中,还在不断的琢磨,如果失败了还有什么其他的方案。 所以尽管Oracle这么一个成熟的商业数据库,做起来还是有些难度,需要一些额外的技巧,比如规避bug,间接实现需求等。 但是换个角度,2亿多数据的表,其实MySQL也不是新鲜事儿了。如果MySQL碰到了这种情况,该怎么处理呢。 梳理业务需求 假设业务需求还是不变,如下: 业务同学反馈,数据库中有一个表数据量很大,因
早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,产出了canal项目。canal的原理很简单,就是如上图片所示
CanalSharp是阿里巴巴开源项目mysql数据库binlog的增量订阅&消费组件 Canal 的.NET客户端,关于什么是 Canal?又能做什么?我会在后文为大家一一介绍。CanalSharp 这个项目,是由我和 WithLin(主要贡献) 完成,并将一直进行维护的Canal的.NET客户端项目。目前开源在github:https://github.com/CanalSharp/CanalSharp/ 希望大家多多支持,旨在为.NET开发者提供一个友好的对接Canal的选择,为.NET社区生态做贡献。
摘要:很多 DBA 同学经常会遇到要从一个数据库实时同步到另一个数据库的问题,同构数据还相对容易,遇上异构数据、表多、数据量大等情况就难以同步。我自己亲测了一种方式,可以非常方便地完成 MySQL 数据实时同步到Hazelcast Cloud,跟大家分享一下,希望对你有帮助。
今天主要介绍一下MySQL 8.0.19 instant add column的新特性,基于亿级数据秒速增加字段,下面一起来看看吧~
备份与恢复⼯具BR:https://docs.pingcap.com/zh/tidb/stable/backup-and-restore-tool
在实际应用中,我们经常需要把 MySQL 的数据同步至其它数据源,也就是在对 MySQL 的数据进行了新增、修改、删除等操作后,把该数据相关的业务逻辑变更也应用到其它数据源,例如:
canal [kə’næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费
数据准实时复制(CDC)是目前行内实时数据需求大量使用的技术,随着国产化的需求,我们也逐步考虑基于开源产品进行准实时数据同步工具的相关开发,逐步实现对商业产品的替代。本文把市面上常见的几种开源产品,Canal、Debezium、Flink CDC 从原理和适用做了对比,供大家参考。
最近在看TiDB的系统管理课程,对TiDB周边的配套工具做了一下了解,今天总结下。
领取专属 10元无门槛券
手把手带您无忧上云