首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NOT IN子查询中出现NULL值对结果的影响你注意到了吗

    * GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。 前言 开发人员写的SQL语句中经常会用到in,exists,not in,not exists 这类子查询,通常,含in、exists的子查询称为半连接(semijoin),含not in、 not exists的子查询被称之为反连接,经常会有技术人员来评论in 与exists 效率孰高孰低的问题,我在SQL优化工作中也经常对这类子查询做优化改写,比如半连接改为内连接,反连接改为外连接等,哪个效率高是要根据执行计划做出判断的,本文不是为了讨论效率问题,是要提醒一点:not in子查询的结果集含NULL值时,会导致整个语句结果集返回空,这可能造成与SQL语句书写初衷不符。

    01

    MySQL -通过调整索引提升查询效率

    我们遇到的最容易引起困惑的问题就是索引列的顺序。正确的顺序依赖于使用该索引的查询,并且同时需要考虑如何更好地满足排序和分组的需要(顺便说明,本节内容适用于B-Tree索引;哈希或者其他类型的索引并不会像B-Tree索引一样按顺序存储数据)。 在一个多列B-Tree索引中,索引列的顺序意味着索引首先按照最左列进行排序,其次是第二列,等等。所以,索引可以按照升序或者降序进行扫描,以满足精确符合列顺序的ORDER BY、GROUP BY和DISTINCT等子句的查询需求。 所以多列索引的顺序至关重要。在“三星索引”系统中,列顺序也决定了一个索引是否能够成为一个真正的“三星索引”。 对于如何选择索引的列顺序有一个经验法则:将选择性最高的列放到索引最前列。这个建议有用吗?在某些场景可能有帮助,但通常不如避免随机IO和排序那么重要,考虑问题需要更全面(场景不同则选择不同,没有一个放之四海皆准的法则。这里只是说明,这个经验法则可能没有你想象的重要)。 当不需要考虑排序和分组时,将选择性最高的列放在前面通常是很好的。这时候索引的作用只是用于优化WHERE条件的查找。在这种情况下,这样设计的索引确实能够最快地过滤出需要的行,对于WHERE子句中只使用了索引部分前缀列的查询来说选择性也更高。然而,性能不只是依赖于所有索引列的选择性(整体基数),也和查询条件的具体值有关,也就是和值的分布有关。这和选择前缀的长度需要考虑的地方一样。可能需要根据那些运行频率最高的查询来调整索引列的顺序,让这种情况下索引的选择性最高。

    02
    领券