首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MySQL运维11-Mycat分库分表之应用指定分片

    此规则是在运行阶段有应用自主决定路由到那个分片,根据提供的字段,然后按照指定的规则,截取该字段的部分子字符串当做分片的依据,该分别方法比较灵活,适用于某个字段有几个特殊的字符串拼接而成的这种场景,例如:一个学校的学号:小学部的学号以0开头,形式为:0xxxxx(注意因为数据节点的索引是从0开始的,所以这里截取的字符串最好也是从0开始,不然第一个数据节点将会没有值存在,后面会有演示),中学部的学号以1开头,形式为1xxxxx,高中部的学号以2开头,形式为2xxxxx等,这样就不用在单独做一个字段区分学段了,只需要判断一下学号的开头就可以实现不同学段的学生分库分表储存。

    01

    一场pandas与SQL的巅峰大战(二)

    上一篇文章一场pandas与SQL的巅峰大战中,我们对比了pandas与SQL常见的一些操作,我们的例子虽然是以MySQL为基础的,但换作其他的数据库软件,也一样适用。工作中除了MySQL,也经常会使用Hive SQL,相比之下,后者有更为强大和丰富的函数。本文将延续上一篇文章的风格和思路,继续对比Pandas与SQL,一方面是对上文的补充,另一方面也继续深入学习一下两种工具。方便起见,本文采用hive环境运行SQL,使用jupyter lab运行pandas。关于hive的安装和配置,我在之前的文章MacOS 下hive的安装与配置提到过,不过仅限于mac版本,供参考,如果你觉得比较困难,可以考虑使用postgreSQL,它比MySQL支持更多的函数(不过代码可能需要进行一定的改动)。而jupyter lab和jupyter notebook功能相同,界面相似,完全可以用notebook代替,我在Jupyter notebook使用技巧大全一文的最后有提到过二者的差别,感兴趣可以点击蓝字阅读。希望本文可以帮助各位读者在工作中进行pandas和Hive SQL的快速转换。本文涉及的部分hive 函数我在之前也有总结过,可以参考常用Hive函数的学习和总结。

    02
    领券