一条查询语句在经过MySQL查询优化器的各种基于成本和规则的优化会后生成一个所谓的执行计划,这个执行计划展示了接下来具体执行查询的方式,比如多表连接的顺序是什么,对于每个表采用什么访问方法来具体执行查询等等。设计MySQL的大叔贴心的为我们提供了EXPLAIN语句来帮助我们查看某个查询语句的具体执行计划,本章的内容就是为了帮助大家看懂EXPLAIN语句的各个输出项都是干嘛使的,从而可以有针对性的提升我们查询语句的性能。
先看看具体有哪些字段: mysql> EXPLAIN SELECT 1; 其实除了以SELECT开头的查询语句,其余的DELETE、INSERT、REPLACE以及UPDATE语句前边都可以加上EXPLAIN这个词儿,用来查看这些语句的执行计划 建两张测试表: CREATE TABLE t1 ( id INT NOT NULL AUTO_INCREMENT, key1 VARCHAR(100), key2 VARCHAR(100), key3 VARCHAR(100),
本文提要 从编码角度来优化数据层的话,我首先会去查一下项目中运行的sql语句,定位到瓶颈是否出现在这里,首先去优化sql语句,而慢sql就是其中的主要优化对象,对于慢sql,顾名思义就是花费较多执行时间的语句,它带来的影响也比较恶劣,首先是执行时间过长影响数据的返回速度,其次,慢sql的长时间执行也会消耗和占用mysql的系统资源,影响其他的sql语句执行,过多的慢sql极其影响性能,如果系统流量或者并发量较大的情况下,过多的执行慢sql很有可能造成mysql的死锁以致于mysql服务无法正常使用。 dr
group查询就是分组查询,为什么要分组查询?因为我们想按某个维度进行统计。下面来看个图:
本文想和大家来聊聊Mysql中的执行计划,一条SQL语句经过了查询优化器模块分析后,会得到一个执行计划,通过这个执行计划,我们可以知道该条SQL语句具体采用的多表连接顺序是什么,对于每个表具体采用的访问方法是什么 . . .
从表面意思上看,MySQL分表就是将一个表分成多个表,数据和数据结构都有可能会变。MySQL分表分为垂直分表和水平分表。
前面的几篇文章中,我们大体上介绍了 SQL 中基本的创建、查询语句,甚至也学习了相对复杂的连接查询和子查询,这些基本功相信你也一定掌握的不错,那么本篇则着重介绍几个技巧方面的关键字,能够让你更快更有效率的写出一些 SQL。
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了(当时在广州休假了1个月多,在实习期间也没咋写过SQL),回到公司的第一个需求就是做报表。
最近在公司做了几张报表,还记得刚开始要做报表的时候都快把SQL给忘光了,回到公司的第一个需求就是做报表。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
“ 在上一篇关系型数据库之MySQL的文章中,我们介绍了什么是关系型数据库以及MySQL查询优化的大体思路,那今天我们就针对具体的语句来看一下,如何优化MySQL的查询语句。”
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
如果你用cmd窗口向一张表插入数据的时候,插入的数据是中文,会出现错误提示,用软件操作的请忽略。。。 出现错误的原因是cmd窗口采用的是gbk编码,所以你在cmd窗口输入的数据都是gbk编码的,而数据库中的编码默认都为utf8,所以出现的是编码问题。 我们可以输入该条指令查看数据库相关编码集。
左连接查询:以左表为主表,右表为从表,查询符合条件的数据 1.当右表中数据匹配不到时展示为空 例: 左表两条数据,按条件匹配到右表一条数据且匹配左表第一条,结果展示两条数据,且第二条数据右表中的字段全部为null 2.当匹配到右表的数据为多条时,左表数据会重复展示,不会自动合并 例: 左表数据一条,按条件匹配到右表数据三条,结果展示三条数据,左表数据均相同,右表数据不同
MySQL如果检测到两个事务发生了死锁,会回滚其中一个事务,让另一个事务执行成功。很明显,我们这条insert语句被回滚了。
我们的表经常使用的MyISAM、InnoDB存储引擎都是将数据和索引都存储到磁盘上的,当查询表中的记录时,需要先把数据或者索引加载到内存中,然后再进行操作。这个从磁盘到内存的加载过程损耗的时间称为I/O成本。
今天是《MySQL核心知识》专栏的第6章,今天为大家系统的讲讲MySQL中的查询语句,希望通过本章节的学习,小伙伴们能够举一反三,彻底掌握MySQL中的各种查询语句。好了,开始今天的正题吧。
上一篇讲了比较简单的单表查询以及MySQL的组函数,这一篇给大家分享一点比较难得知识了,关于多表查询,子查询,左连接,外连接等等。希望大家能都得到帮助! 在开始之前因为要多表查询,所以搭建好环境:
MySQL 可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。
CynosDB 是腾讯数据库研发团队推出的自研数据库,有PostgreSQL和MySQL两个版本。本文以兼容PostgreSQL版CynosDB为例,介绍我们的架构设计和优化思路。
索引条件下推,也叫索引下推,英文全称Index Condition Pushdown,简称ICP。
今天上班的时候,要对一个数据库中的所有慢日志记录进行做一个统计,统计出数据库中所有慢日志用时最长的10条,这个需求乍一听比较简单,数据库中的满日志大概有5万多条吧,走个全表扫描也就不到半秒的时间。我第一反应是:
大多数的MySQL服务器都开启了查询缓存。这是提高性能最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结构了。
为了解决多个进程访问内存或磁盘中的同一份数据造成的冲突,通常有两种解决方案,一种是多版本;另一种就是锁。MySQL作为一种关系型数据库,其实也是通过这两种方式来解决数据访问冲突的。MySQL数据多版本叫MVCC,同时MySQL使用了各种类型的锁来保证数据一致性。
我们在面试的时候经常被问到你如何对数据库优化?动不动就分库分表,但是实际上有几个有分库分表的经验呢?下面我们将介绍优化数据库的各个阶段。
大家好,我是程序员啊粥,这段时间一直在分享 MySQL 索引系列的文章,我们学会了索引模型 MySQL InnoDB 索引模型,以及和具体的索引使用原则等内容,今天开始我们学习 SQL 的优化。
在看此篇前,建议先阅读MySQL索引,对索引有个基本了解:MySQL数据库进阶-索引-CSDN博客
Memory表支持 Hash索引,因此查找操作非常快。Memroy表是表级锁,因此并发写入的性能较低,每行的长度是固定的,可能导致部分内存的浪费。
左连接:只要左边表中有记录,数据就能检索出来,而右边有的记录必要在左边表中有的记录才能被检索出来。
数据库索引好比是一本书前面的目录,能加快数据库的查询速度。索引是对数据库表中一个或多个列(例如,User 表的 '姓名' 列)的值进行排序的结构。如果想按特定用户的姓名来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
【注】因为id主键的类型为INT,存储长度为4个字节。所以主键列表值为<4, 1> 和 <4, 2>。
开始今天的文章之前,先说明下昨天文章中的一个错误,昨天文章最后说replace into带来的死锁问题可以使用insert into duplicate key update的方法来解决,今天实际测试的时候,还是遇到了一些问题,改方法并没有完全解决死锁的问题,来看测试的结果。
在上一篇文章《锁的类型以及加锁原理》主要总结了 MySQL 锁的类型和模式以及基本的加锁原理,今天我们就从原理走向实战,分析常见 SQL 语句的加锁场景。了解了这几种场景,相信小伙伴们也能举一反三,灵活地分析真实开发过程中遇到的加锁问题。
1、为什么要分表? 数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。
本节主要介绍openGauss中如何保证单机事务的ACID,在此基础上,在之后文章的第四节中将说明如何保证分布式事务的ACID。
索引除了能够确保唯一的标记一条记录,还能是MySQL服务器更快的从数据库中获取结果。索引在排序中的作用也非常大。
前面说了mysql优化器访问数据库的方法有const,ref,ref_or_null,range,index,all。然后又分为条件全部是索引回表查询,和条件有非索引查询,则需要回表之后,在过滤。又有intersection合并索引和union并集索引,当两个单独二级索引查询,不是联合索引查询,可能会触发这两个索引查询,用and是intersection,用or是union查询,触发有两个注重点:
LSM Tree(Log-structured merge-tree)广泛应用在HBase,TiDB等诸多数据库和存储引擎上,我们先来看一下它的一些应用:
相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了。这图只是让大家回忆一下,各种连接查询。 然后要告诉大家的是,需要根据查询的情况,想好使用哪种连接方式效率更高。
背景 MySQL/InnoDB的加锁分析,一直是一个比较困难的话题。我在工作过程中,经常会有同事咨询这方面的问题。同时,微博上也经常会收到MySQL锁相关的私信,让我帮助解决一些死锁的问题。本文,准备就MySQL/InnoDB的加锁问题,展开较为深入的分析与讨论,主要是介绍一种思路,运用此思路,拿到任何一条SQL语句,都能完整的分析出这条语句会加什么锁?会有什么样的使用风险?甚至是分析线上的一个死锁场景,了解死锁产生的原因。 注:MySQL是一个支持插件式存储引擎的数据库系统。本文下面的所有介绍,都是基于I
mysql -u用户名 -p密码 回车之后直接进入系统,不需要像上面那样,再进行密码的输入
本文将结合实例demo,阐述30条有关于优化SQL的建议,多数是实际开发中总结出来的,希望对大家有帮助。
前几天,线上发生了一次数据库死锁问题,这一问题前前后后排查了比较久的时间,这个过程中自己也对数据库的锁机制有了更深的理解。本文总结了这次死锁排查的全过程,并分析了导致死锁的原因及解决方案。希望给大家提供一个死锁的排查及解决思路。
领取专属 10元无门槛券
手把手带您无忧上云