本文由 PingCAP 研发工程师雷宇分享,主要从宏观角度分析 TiDB 究竟能做什么,创造什么样的价值,以及研发过程中的一些设计立足点。 文章将从四个部分分享:
今年算是 PG 针对其他传统数据库fight比较激烈的一年,也算是开始,后面的戏还长着呢,从气势上看,有些数据库,听闻在今年各种大小的数据库会议上,已经没有了声音,加上裁员的风波,人气低落。
从数据库架构设计的角度,主要有三种,Shared Everything、Shared Disk以及Shared Nothing。
以支付宝用户为例,8亿;微信用户更是10亿。订单表更夸张,比如美团外卖,每天都是几千万的订单。淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的。事实上MySQL单表可以存储10亿级数据,只是这时候性能比较差,业界公认MySQL单表容量在1KW以下是最佳状态,因为这时它的BTREE索引树高在3~5之间。
近年来,随着数据规模越来越大,以及由此衍生出数据实时化的诉求激增,产生了一系列大数据相关的业务场景,场景复杂性高以及业务多维度是明显的两个特点,因此出现许多了实时数仓架构来满足业务需求。
最近学习了阿里资深技术专家李运华的架构设计关于分库分表的教程,颇有收获,总结一下。
互联网高速发展带来海量的信息化数据,也带来更多的技术挑战。各种智能终端设备(比如摄像头或车载设备等)以每天千万级的数据量上报业务数据,电商、社交等互联网行业更不必说。这样量级的数据处理,已经远不是传统关系型数据库的单库单表架构所能支撑的,如何高效存储和访问这些数据,成为一个非常现实且亟待解决的问题。
1.高可用分析: 高可用,主库挂了,keepalive(只是一种工具)会自动切换到备库。这个过程对业务层是透明的,无需修改代码或配置。
1、高可用分析:高可用,主库挂了,keepalive(只是一种工具)会自动切换到备库。这个过程对业务层是透明的,无需修改代码或配置。
本文讨论了分布式数据库在在线扩容方面的挑战, 详细解释了一般分布式数据库和 TiDB 在扩容机制上的不同。 一般分布式数据库在进行在线扩容时,需要重新平衡数据分布,可能会影响系统的可用性和 IO 消耗。 相比之下,TiDB 的存算分离架构使得扩容对业务影响较小。
1、高可用分析:高可用,主库挂了,keepalive(只是一种工具)会自动切换到备库。这个过程对业务层是透明的,无需修改代码或配置。 2、高性能分析:读写都操作主库,很容易产生瓶颈。大部分互联网应用读多写少,读会先成为瓶颈,进而影响写性能。另外,备库只是单纯的备份,资源利用率50%,这点方案二可解决。 3、一致性分析:读写都操作主库,不存在数据一致性问题。 4、扩展性分析:无法通过加从库来扩展读性能,进而提高整体性能。 5、可落地分析:两点影响落地使用。第一,性能一般,这点可以通过建立高效的索引和引入缓存来增加读性能,进而提高性能。这也是通用的方案。第二,扩展性差,这点可以通过分库分表来扩展。
背景 2016年Q3季度初,在美团外卖上单2.0项目上线后,商家和商品数量急速增长,预估商品库的容量和写峰值QPS会很快遇到巨大压力。随之而来也会影响线上服务的查询性能、DB(数据库,以下统一称DB)主从延迟、表变更困难等一系列问题。 要解决上面所说的问题,通常有两种方案。第一种方案是直接对现有的商品库进行垂直拆分,可以缓解目前写峰值QPS过大、DB主从延迟的问题。第二种方案是对现有的商品库大表进行分库分表,从根本上解决现有问题。方案一实施起来周期较短,但只能解决一时之痛,由此可见,分库分表是必然的。 在确
在高并发系统当中,分库分表是必不可少的技术手段之一,同时也是BAT等大厂面试时,经常考的热门考题。
哈喽,我是狗哥。今天刷公众号文章,发现一篇关于分库分表的文章,个人觉得写得非常透彻,特此分享给大家。以下是正文:
1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)
如果业务量剧增,数据库可能会出现性能瓶颈,这时候我们就需要考虑拆分数据库。从这几方面来看:
本文包含数据库架构原则、常见的四种架构方案、两种一致性解决方案、以及作者个人的一些见解。
本文章是电商网站架构案例的第三篇,主要介绍数据库集群,读写分离,分库分表,服务化,消息队列的使用,以及本电商案例的架构总结。
注:图中圈出的是数据同步的地方,数据同步(从库从主库拉取binlog日志,再执行一遍)是需要时间的,这个同步时间内主库和从库的数据会存在不一致的情况。如果同步过程中有读请求,那么读到的就是从库中的老数据。如下图。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
前面我们讲解了数据库的读写分离方案(数据库读写分离方案,实现高性能数据库集群)来解决我们的大量读流量对系统的冲击。那随着运营部门的同事在不停的做出各种促销或者拉新活动,我们注册用户越来越多,同时订单量以及用户行为数据等持续的增加,导致我们的系统现在出现了下面这些问题。
作为这几年热度颇高的一款开源产品,ClickHouse在国内的互联网大厂也陆续有被使用。在大数据学习阶段,也不妨多了解一下ClickHouse,下面我们主要来对ClickHouse架构做个简单的介绍。
说明:由于答案篇幅较长,以下文章为索引,具体答案在GitHub上,你可以点击文末阅读原文直达,也可以复制上面的链接到浏览器打开。
首先回答一下为什么要分库分表,答案很简单:数据库出现性能瓶颈。用大白话来说就是数据库快扛不住了。
Sharding-JDBC是一个开源的适用于微服务的分布式数据访问基础类库,它始终以云原生的基础开发套件为目标。
最近计划参与一个换书活动,翻到《企业IT架构转型之道阿里巴巴中台战略思想与架构实战》这本书时,回想起令我印象比较深刻的一个知识点:“异构索引表”,所以在此记录并分享,和大家共同学习交流。
这是微服务还没兴起之前,很多项目的架构,随着业务的堆积,项目越来越庞大,数据量也越来越庞大,如果并发一旦上来,就很容易出现一些性能的问题。而且项目太庞大,维护起来也不容易。
今天是《分库分表 ShardingSphere 原理与实战》系列的开篇文章,之前写过几篇关于分库分表的文章反响都还不错,到现在公众号:程序员小富后台不断的有人留言、咨询分库分表的问题,我也没想到大家对于分库分表的话题会这么感兴趣,可能很多人的工作内容业务量较小很难接触到这方面的技能。这个系列在我脑子里筹划了挺久的,奈何手说啥也不干活,就一直拖到了现在。
之前有不少刚入坑 Java 的粉丝留言,想系统的学习一下分库分表相关技术,可我一直没下定决心搞,眼下赶上公司项目在使用 sharding-jdbc 对现有 MySQL 架构做分库分表的改造,所以借此机会出一系分库分表落地实践的文章,也算是自己对架构学习的一个总结。
面试官:这边有个数据库-单表1千万数据,未来1年还会增长多500万,性能比较慢,说下你的优化思路
曾几何时,“并发高就分库,数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。
在考虑分库分表之前,我们先来探讨下分库分表是解决什么问题的一类技术。从大的方向上看,分库分表是解决两类问题:一是资源承载问题,二是开发架构问题。
陈某的知识星球开通了,一个相互交流的技术圈子,陈某会在星球中定期分享干货,如果你也想和球友一起打卡学习进阶,戳链接加入
缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度、58都没有听说有分区表相关的应用,业内进行一些技术交流的时候也更多的是自己分库分表,而不是使用分区表。于是去网上查了一下,并询问了58到家的DBA专家,将自己收到的信息沉淀下来,share给大伙。 解决什么问题? 回答:当mysql单表的数据库过大时,数据库的访问速度会下降,“数据量大”问题的常见解决方案是“水平切分”。 mysql常见的水平切分方式有哪些? 回答:分库分表,分区表 什么是mysql的分库分表? 回答:把一个很大的库(表)
当MySQL单表的数据量过大时,数据库的访问速度会下降,“数据量大”问题的常见解决方案是“水平切分”。
本文是《极客时间》-《TiDb极简入门》的学习笔记。传送门:https://time.geekbang.org/opencourse/videointro/100089601
《MySQL冲冲冲》是由 IMG 社区和爱可生开源社区联合举办的一款专门针对 MySQL 技术话题的节目,以下是第五期的直播内容。
今天和大家聊聊分库分表技术,大家面试的时候肯定都有这样的经历,面试官动不动就问分库分表、高并发、虚拟机、分布式事务等等这些高大上的技术。所以我们还是有必要要了解一下的。
随着数据存储需求的不断增加,分布式数据库成为了处理大规模数据的一种重要方式。分布式数据库可以将数据分散到多个计算节点上,并利用分布式计算的能力来提高数据处理的效率和可用性。然而,在使用分布式数据库的过程中,是否需要进行分库分表呢?
数据库在业务体系不大的情况,一般都是单库出现,通过增加主从复制提高SLA。但当业务体量不断扩大,就需要考虑进行数据拆分来解决性能瓶颈问题。
内容为慕课网的《高并发 高性能 高可用 Mysql 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节讲述三高架构的另外两个部分切换和扩展,扩展指的是分库分表减轻数据库的压力,同时因为分库分表需要针对节点宕机问题引入了一些优化手段,而切换部分就是讲述节点宕机的切换问题的,最后我们结合复制的主从切换讲述如何搭建一个三高的架构。
领取专属 10元无门槛券
手把手带您无忧上云