顺序表项目-通讯录 顺序表的底层是数组—决定了其作为可以存储不单一数据的结构体的特性—从简单的顺序表变成通讯录 通讯录中不同的数据构成了一个结构体,例如包含联系人的数据:姓名,性别,电话,家庭住址,年龄
因为Linux内核默认的PGD从21位开始,也就是bit[31:21],一共2048个一级页表项;而ARM32硬件结构上,PGD是从20bit开始的,页表项为4096个,比Linux内核多一倍,那么代码实现上取巧了...而在真实硬件中,一个PGD页表项,只有256个PTE,也就是说,前512个PTE页表项是给OS用的(也就是Linux内核用的页表,可以用于模拟L_PTE_DIRTY、L_PTE_YOUNG等标志位),后...该函数的主要目的是根据Linux版本的页面表项内容来填充ARM硬件版本的页表项; 首先把linux内核版本的页表项内容写入linux版本的页表中,然后根据mem_type数据结构prot_pte的标志位来设置...当往一个干净页表写入时,会触发写权限缺页中断(虽然linux版本的页面表项标记了可写权限,但是ARM硬件页面表项还不具有写入权限),那么在缺页中断处理handle_pte_falut()会在该页的linux...版本中PTE页面表项标记为"dirty",并且发现PTE页表项内容改变了,ptep_set_access_flags()函数会把新的linux版本的页表项内容写入硬件页表,从而实现模拟过程;
Huge pages ( 标准大页 ) 和 Transparent Huge pages( 透明大页 ) 在 Linux 中大页分为两种:Huge pages ( 标准大页 ) 和 Transparent...内存是以块即页的方式进行管理的,当前大部分系统默认的页大小为 4096 bytes 即 4K。1MB 内存等于 256 页;1GB 内存等于 256000 页。...Huge Pages Huge pages 是从 Linux Kernel 2.6 后被引入的,目的是通过使用大页内存来取代传统的 4kb 内存页面, 以适应越来越大的系统内存,让操作系统可以支持现代硬件架构的大页面容量功能...Transparent Huge Pages Transparent Huge Pages 缩写 THP ,这个是 RHEL 6 开始引入的一个功能,在 Linux6 上透明大页是默认启用的。...No Swapping: We must avoidswapping to happen on Linux OS at all Document 1295478.1.
TTBRx寄存器保存了第0级页表的基地址(L0 Table base address, Linux内核中称为PGD), L0页表中有512个表项(Table Descriptor),以虚拟地址的bit[...每个表项的内容含有下一级页表的基地址,即L1页表(Linux内核中称为PUD)的基地址。...PUD页表中有512个表项,以虚拟地址的bit[38:30]为索引值在PUD表中查找相应的表项,每个表项的内容含有下一级页表的基地址,即L2页表(Linux内核中称为PMD)的基地址。...PMD页表中有512个表项,以虚拟地址的bit[29:21]为索引值在PMD表中查找相应的表项,每个表项的内容含有下一级页表的基地址,即L3页表(Linux内核中称为PTE)的基地址。...首先通过init_mm数据结构的pgd成员来获取PGD页表的基地址,然后通过pgd_index()来计算PGD页表中的偏移量offset。
伙伴系统分配算法 在上一节, 我们介绍了Linux内核怎么管理系统中的物理内存....但有时候内核需要分配一些物理内存地址也连续的内存页, 所以Linux使用了 伙伴系统分配算法 来管理系统中的物理内存页....在Linux内核中, 把两个物理地址相邻的内存页当作成伙伴, 因为Linux是以页面号来管理内存页的, 所以就是说两个相邻页面号的页面是伙伴关系....上一节我们介绍过内存管理区数据结构 struct zone_struct, 在内存管理区数据结构中有个名为 free_area 类型为 free_area_t 的字段, 他的作用就是用来管理内存管理区内的空闲物理内存页...在后面的Linux版本中改进了这个问题.
Linux虚拟存储管理分析 摘 要:本文通过解剖Linux操作系统的虚拟存储管理机制,说明了Linux虚拟存储的特点、虚拟存储器的实现方法,并基于Linux Kernel Source 1.0,详细分析有关虚拟存诸管理的主要数据结构之间的关系...本文介绍了Linux虚拟存储技术的特点,并结合操作系统原理和Linux内核源码,通过分析虚拟存储管理所需的主要数据结构及其相互关系,来更深入地了解Linux虚拟存储管理机制。...两级表的第一级表称为页目录,存储在一个4K字节的页中,页目录表共有1K个表项,每个表项为4个字节,线性地址最高的10位(22-31位)用来产生第一级表索引,由该索引得到的表项中的内容定位了二级表中的一个表的地址...第二级表称为页表,存储在一个4K字节页中,它包含了1K字节的表项,每个表项包含了一个页的物理地址。二级页表由线性地址的中间10位(12-21位)进行索引,定位页表表项,获得页的物理地址。...图 3 虚拟存储管理的数据结构关系 数据结构介绍 vm_area_struct Linux采用了虚拟存储区域的方式来管理虚拟存储空间,一个虚拟存储区域是某个进程的一段虚拟存储空间
作者 | JiekeXu 大家好,我是JiekeXu,很高兴又和大家见面了,今天和大家一起来看看 Linux 透明大页 THP 和标准大页 HP 目 录 标准大页(HugePages) 透明大页(Transparent...在 Linux 中大页分为两种: Huge pages (标准大页) 和 Transparent Huge pages(透明大页)。...标准大页(HugePages) 标准大页(HugePages)是从 Linux Kernel 2.6 后被引入的,Huge Pages 可以称为大内存页或者大页面,有时候也翻译成大页/标准大页/传统大页...透明大页存在的问题: Oracle Linux team 在测试的过程中发现,如果 linux 开启透明大页 THP,则 I/O 读写性能降低 30%;如果关闭透明大页 THP,I/O 读写性能则恢复正常...因此,Oracle 建议在所有 Oracle 数据库服务器上禁用透明大页,以避免性能问题。 Linux7 默认情况下是开启透明大页功能的。检查系统对应版本。
在Linux中,透明巨页(Transparent HugePage)和巨页(HugePage)是两种不同的内存管理技术。 透明巨页是Linux内核中的一项特性,旨在提高内存的利用率和性能。...它通过将内存分配为更大的巨页(通常为2MB或1GB),减少了对内存页表的访问次数,从而提高了内存访问的效率。透明巨页是透明的,应用程序无需进行任何修改即可受益于这种内存管理技术。...而巨页是指一种更大尺寸的内存页,在Linux中可以使用不同的页面大小,常见的巨页大小是2MB或1GB。...巨页可以提供更高的内存访问性能,因为它减少了页表的数量,降低了TLB(Translation Lookaside Buffer)缓存的压力,从而减少了内存访问的开销。...巨页需要应用程序进行适当的修改和配置才能使用。 因此,透明巨页和巨页都是通过增加内存页的尺寸来提高内存访问性能,但透明巨页不需要应用程序的修改,而巨页需要应用程序的支持和配置。
剩下的二级页表项只有用到的时候才会再去申请。 则只需要页目录1024个,页表项1024个,总共2028个页表管理条目,(2048*4=)8k就可以支持起4GB的地址空间转换。...2的36次方个页表项(64位Linux目前只使用了地址中的48位的,在这里面,最后12位都是页内地址,只有前36位才是用来寻找页表的), 236 *4Byte=32GB,这个更不能忍了。...29 大小的一个页全局目录就够了,现在的页表数据结构被扩展到了8byte。...这个页全局目录仅仅需要(29 *8=)4K,剩下的中间页目录、页表项只需要在使用的时候再分配就好了。Linux就是通过这种方式支持起(248 =)256T的进程地址空间的。...这样将会大大减少页表项的数量,所以自然也会降低TLB cache miss率。所要承担的代价就是会造成一定程度的内存浪费。在Linux里,大内存页默认是不开启的。
Linux 的页全局目录对应80x86 的页目录指针表(PDPT),取消了页上级目录,页中间目录对应80x86的页目录,Linux的页表对应80x86的页表。...2 linux中页表处理数据结构 2.1 页表类型定义pgd_t、pmd_t、pud_t和pte_t Linux分别采用pgd_t、pmd_t、pud_t和pte_t四种数据结构来表示页全局目录项、页上级目录项...这四种 数据结构本质上都是无符号长整型unsigned long Linux为了更严格数据类型检查,将无符号长整型unsigned long分别封装成四种不同的页表项。...2.3 页表处理函数 [注意] 以下内容主要参见 深入理解linux内核第二章内存寻址中页表处理 内核还提供了许多宏和函数用于读或修改页表表项: 如果相应的表项值为0,那么,宏pte_none...因此,在虚拟地址转化物理物理地址的过程中,每访问一级页表就会访问一次内存。 3.1.2 页表项 页表项从四种页表项的数据结构可以看出,每个页表项其实就是一个无符号长整型数据。
使用虚拟化和嵌套分页只有KVM和Linux客户端同时支持映射更大的TLB正在使用大页面,但显著的速度已经发生了,如果其中一个使用大页面只是因为TLB miss会跑得更快。...(查询到相应的页表项为空)。...max_ptes_swap指定当将一组页面坍缩(collapse)成一个透明的大页面时,可以从交换区换入多少页面(查询到相应的页表项为换出页标识符)。。...如果您没有遍历页表,但是遇到了一个物理的大页,但是您不能在代码中原生地处理它, 您可以通过调用split_huge_page(page)来分裂它。这就是Linux VM在尝试切换大页面之前所做的。...参考⽂献 Linux-5.10.50源码 Documentation/vm/transhuge.rst Documentation/admin-guide/mm/transhuge.rst
我们知道LINUX的内存管理系统中有”反向映射“这一说,目的是为了快速去查找出一个特定的物理页在哪些进程中被映射到了什么地址,这样如果我们想把这一页换出(SWAP),或是迁移(Migrate)的时候,就能相应该更改所有相关进程的页表来达到这个目的...1、为什么要使用反向映射 物理内存的分页机制,一个PTE(Page Table Entry)对应一个物理页,但一个物理页可以由多个PTE与之相对应,当该页要被回收时,Linux2.4的做法是遍历每个进程的所有...Linux采用三级页表: PGD:顶级页表,由pgd_t项组成的数组,其中第一项指向一个二级页表。...PMD:二级页表,由pmd_t项组成的数组,其中第一项指向一个三级页表(两级处理器没有物理的PMD)。 PTE:是一个页对齐的数组,第一项称为一个页表项,由pte_t类型表示。...pte_present(*pte)) goto out_unmap; /* 有了pgd pmd pte 后我们便达到我们目的了 ===> 查找与页相关联系的页表项,找到后便可以进行修改了
---- 1.为什么要使用大页内存 了解操作系统内存管理的人一般都知道操作系统对内存采用多级页表和分页进行管理,操作系统每个页默认大小为4KB。...如果进程使用的内存过大,比如1GB,这样会在页表中占用 1GB / 4KB = 262144个页表项,而系统TLB可以容纳的页表项远小于这个数量。...操作系统默认支持的大页是2MB,当使用1GB内存时,在页表中将占用 1GB / 2MB = 512个页表项,可以大大提升TLB命中率,进而提升应用性能。...---- 2.怎样使用大页内存 2.1 先预留一定量的大页内存 #先查看系统有多少已经预留的大页内存 # cat /proc/meminfo |grep -i huge #预留192个大页 # sysctl...vm.nr_hugepages=192 #查看是否预留成功 # cat /proc/meminfo |grep -i huge 2.2 通过系统调用来从预留的大页内存中申请大页 #include <sys
环境: RHEL 6.5 + Oracle 11.2.0.4 RAC 1.确认透明大页是否开启 grep HugePage /proc/meminfo cat /sys/kernel/mm/redhat_transparent_hugepage...HugePages_Rsvd: 23 HugePages_Surp: 0 [root@jystdrac1 ~]# 若上面的AnonHugePages > 0, 说明启用了透明大页。...cat /sys/kernel/mm/redhat_transparent_hugepage/enabled [always] madvise never 若上面扩号是在never的位置,说明禁用了透明大页。...transparent_hugepage=never Once modified the line will read similar to the following example: title Oracle Linux.../sda default=0 timeout=5 splashimage=(hd0,0)/grub/splash.xpm.gz hiddenmenu title Red Hat Enterprise Linux
用来将虚拟地址映射到物理地址的数据结构称为页表, 实现两个地址空间的关联最容易的方式是使用数组, 对虚拟地址空间中的每一页, 都分配一个数组项....页表管理分为两个部分, 第一个部分依赖于体系结构, 第二个部分是体系结构无关的. 所有数据结构几乎都定义在特定体系结构的文件中....这些数据结构的定义可以在头文件arch/对应体系/include/asm/page.h和arch/对应体系/include/asm/pgtable.h中找到....pgtable_xx.h . 2 页表 Linux内核通过四级页表将虚拟内存空间分为5个部分(4个页表项用于选择页, 1个索引用来表示页内的偏移)....3.3 Linux的三级页表 当X86引入物理地址扩展(Pisycal Addrress Extension, PAE)后,可以支持大于4G的物理内存(36位),但虚拟地址依然是32位,原先的页表项不适用
修改(2015-11-12):Linux的虚拟内存管理是基于mmap来实现的。...一个vm_area_struct映射到一组连续的页表项。页表项又指向物理内存page,这样就把一个文件和物理内存页相映射。...vm_area_struct,可以映射到对应的页表项,但是页表项没有指向具体的物理页 已分配虚拟页,已映射到物理页,指的是已经使用了mmap建立的vm_area_struct,可以映射到对应的页表项,并且页表项指向具体的物理页...虚拟内存管理采用按需分配 + 缺页异常机制来管理页表项和分配对应的物理内存页。当一个虚拟地址对应的页表项不存在时,先创建页表结构,再分配物理内存页,再修改页表 ?...这两个数据结构都是面向同一份vm_area_struct实例,只是组织形式不同。
TLB缓存了上一次虚拟地址到物理地址的转换,TLB不存储具体的数据,存储的是页表的表项。如果能在TLB中找到本次访问的页表项,就不需要再访问主存了。我们把这个过程叫做TLB命中。...中间的8个bit位叫做L2索引,在Linux内核中叫做PT,页表。最低的12位叫做页索引。 在ARM处理器中,TTBRx寄存器存放着页表基地址,我们这里的一级页表有4096个页表项。...每个表项中存放着二级表项的基地址。我们可以通过虚拟地址的L1索引访问一级页表,访问一级页表相当于数组访问。...MMU访问页表是硬件实现的,但页表的创建和填充需要Linux内核来填充。通常,一级页表和二级页表存放在主存储器中。 内存管理总览 系统调用 Linux内核把用户空间分为两部分:用户空间和内核空间。...每个进程都有一个管理进程的数据结构,操作系统中叫做PCB,进程控制块,linux内核中就用task_struct描述进程控制块,task_struct内容非常多,后面我们会详细讲解,今天我们只关注mm成员
文章目录 一、RCU 模式下添加链表项 list_add_rcu 函数 二、RCU 模式下删除链表项 list_del_rcu 函数 一、RCU 模式下添加链表项 list_add_rcu 函数 ---...- 在 Linux 源码 linux-5.6.18\include\linux\rculist.h 头文件中定义的就是 RCU 链表的操作 , 其中定义的 static inline void list_add_rcu..., 就是 向 链表中 添加元素 的 函数 ; list_add_rcu 函数中 , 主要是调用了 __list_add_rcu 函数 , 在 __list_add_rcu 函数中 , 将新添加的 链表项...-5.6.18\include\linux\rculist.h#105 二、RCU 模式下删除链表项 list_del_rcu 函数 ---- 在 Linux 源码 linux-5.6.18\include...-5.6.18\include\linux\rculist.h#156
分段机制下就不得不提段表这种数据结构,其包括段基地址及段最大偏移量。...分页存储管理 Linux使用的时分页的方式。 OS将物理内存分为一块一块大小相同的页(一般为4K)。...分页存储需要一个被称为页表的数据结构,其中每一条数据含当前虚拟页号所对应的物理页号。 虚拟地址分为两部分,页号 + 页偏移量 ?...多级页表 以32位系统为例,其最大虚拟内存为4GB,如果按照每页4K大小,则共有4G / 4K = 1M个页表项,若每个页表项需要4字节(32位嘛)存储,则每个页表大小为4MB,貌似不大,但是需要注意的是需要为每一个进程都创建...对于64位操作系统,linux采用的是4级目录。
内存页(page) 了解了区域 zone,接下来我们就到了组成物理内存的基本单位,页的数据结构 struct page。...页表中所有页表项必须提前建好,并且要求是连续的。如果不连续,就没有办法通过虚拟地址里面的页号找到对应的页表项了。那怎么办呢?我们可以试着将页表再分页,4G 的空间需要 4M 的页表来存储映射。...页目录有 1K 项,用 10 位就可以表示访问页目录的哪一项。这一项其实对应的是一整页的页表项,也即 4K 的页表项。每个页表项也是 4 个字节,因而一整页的页表项是 1K 个。...再用 10 位就可以表示访问页表项的哪一项,页表项中的一项对应的就是一个页,是存放数据的页,这个页的大小是 4K,用 12 位可以定位这个页内的任何一个位置。...到了页表项,只需要分配能够管理那个数据页的页表项页就可以了,也就是说,最多 4K,这样内存就节省多了。
领取专属 10元无门槛券
手把手带您无忧上云