进程切换,又称为任务切换、上下文切换、或者任务调度。本文就研究Linux内核的进程切换。我们首先理解几个概念。
在执行sys_fork的时候,可能会引起切换,例如: 如果产生了阻塞或者时间片到期了
x86 系统中的保护模式,给系统的安全性提供了很大的保障,但是在我们之前的文章中,一直都淡化了特权级别这个概念。
这一篇大致说一下进程的创建,有兴趣的可以参考之前的一些文章或者直接上代码https://github.com/theanarkh/read-linux-0.11。
进程的地址有三种,分别是虚拟地址(逻辑地址)、线性地址、物理地址。在分析之前先讲一下进程执行的时候,地址的解析过程。在保护模式下,段寄存器保存的是段选择子,当进程被系统选中执行时,会把tss和ldt等信息加载到寄存器中,tss是保存进程上下文的,ldt是保存进程代码和数据段的首地址偏移以及权限等信息的。假设当前执行cs:ip指向的代码,系统根据ldt的值从gdt中选择一个元素,里面保存的是idt结构的首地址。然后根据cs的值选择idt表格中的一项,从而得到代码段的基地址和限长,用基地址加上ip指向的偏移得到一个线性地址,这个线性地址分为三个部分,分别是页目录索引,页表索引,物理地址偏移。然后到页目录吧和页表中找到物理地址基地址,再加线性地址中的偏移部分,得到物理地址。下面我们看看这些内容是怎么设置的,使得执行的时候能正确找到我们想要的地址去执行代码。我们从fork函数开始。到进程被调度执行时所发生的事情。fork函数的具体调用过程之前已经分析过。下面贴一下主要的代码。
注:本分类下文章大多整理自《深入分析linux内核源代码》一书,另有参考其他一些资料如《linux内核完全剖析》、《linux c 编程一站式学习》等,只是为了更好地理清系统编程和网络编程中的一些概念性问题,并没有深入地阅读分析源码,我也是草草翻过这本书,请有兴趣的朋友自己参考相关资料。此书出版较早,分析的版本为2.4.16,故出现的一些概念可能跟最新版本内核不同。
摘 要:本文通过解剖Linux操作系统的虚拟存储管理机制,说明了Linux虚拟存储的特点、虚拟存储器的实现方法,并基于Linux Kernel Source 1.0,详细分析有关虚拟存诸管理的主要数据结构之间的关系。
本文以linux0.11版本为基础,分析进程的内存布局,现代版本已经发生比较大的变化,都是很多原理都是类似的。 系统维护了一个全局的数据结构叫GDT( Global Descriptor Table),他保存了所有进程的代码段数据段的一些信息。系统有专门的寄存器保存了GDT的地址,叫GDTR。GTDR的格式如下。
上一节,我们开发了一个流氓程序,当他运行起来后,能够把自己的数据写入到另一个进程的数据内存中。之所以产生这样的漏洞,是因为被入侵进程的数据段所对应的全局描述符在全局描述符表中。恶意程序通过在全局描述符表中查找,当找到目标程序的内存描述符后,将对应的描述符加载到自己的ds寄存器里,于是恶意程序访问内存时,就相当于读写目标程序的内存。 要防范此类入侵,最好的办法是让恶意程序无法读取自己内存段对应的描述符,但是如果不把自己的内存描述符放置在全局描述符表中的话,还能放哪里呢?Intel X86架构还给我们提供了另一
Intel 微处理器的段机制是从8086 开始提出的, 那时引入的段机制解决了从CPU 内部 16 位地址到20 位实地址的转换。为了保持这种兼容性,386 仍然使用段机制,但比以前复杂。 因此,Linux 内核的设计并没有全部采用Intel 所提供的段方案,仅仅有限度地使用 了一下分段机制。这不仅简化了Linux 内核的设计,而且为把Linux 移植到其他平台创造了 条件,因为很多RISC 处理器并不支持段机制。但是,对段机制相关知识的了解是进入Linux 内核的必经之路。
进程,这个词大家应该耳熟能详了,那进程是什么呢?我们说程序一般是外存上的一个可执行文件,而进程就是这个可执行文件在内存中的一个执行实例。概念始终只会是一个抽象的概念,进程系列文章通过 $xv6$ 的实例来将进程这个概念具象化。本篇主要介绍进程涉及到的一些数据结构,废话不多说,直接来看
Linux是一种基于Unix的操作系统,旨在提供稳定、高效、安全的环境。在Linux下,每个正在运行的程序都是一个进程。进程是计算机系统中最为重要的一种资源,也是操作系统管理的最基本单元。因此,了解Linux进程的管理与监测,对于保证系统稳定运行和提高系统性能具有非常重要的意义。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/50644876
在上一篇文章中,我们已经了解了中断和异常的一些概念,对于中断和异常也有了大概的理解。那么,系统中硬件到底是如何处理中断和异常的呢?本文我们就以常见的X86架构为例,看看中断和异常的硬件工作原理。
该文介绍了中断和异常的基本概念、分类,以及Linux 中中断和异常的处理方式,包括硬件中断、软件中断和异常的分类和处理。
之前所说 GDT表 中存储了一些段描述符. 比如有调用门 段描述符. 代码段段描述符. 数据段段描述符 TSS段段描述符
当异常发生时,Linux内核给造成异常的进程发送一个信号,告知其发生了异常。比如,如果一个进程尝试除零操作,CPU会产生除法错误异常,相应的异常处理程序发送SIGFPE信号给当前进程,然后由其采取必要的步骤,恢复还是中止(如果该信号没有对应的处理程序,则中止)。
PS:原先实模式下的各个段寄存器作为保护模式下的段选择器,80486中有6个(即CS,SS,DS,ES,FS,GS)80位的段寄存器。由选择器CS对应表示的段仍为代码段,选择器SS对应表示的段仍为堆栈段。
Socket,原意插座、插口。写软件程序时,可以想象成一根网线,一头插在客户端,一头插在服务端,然后进行通信。所以通信前,双方都要建立一个Socket。
linux的上下文切换就是进程线程的切换,也就是切换struct task_struct结构体,一个任务的上下文包括cpu的寄存器,内核栈等,由于1个cpu上的所有任务共享一套寄存器,所以在任务挂起的时候需要保存寄存器,当任务重新被调度执行的时候需要恢复寄存器。每种处理器都提供了硬件级别的上下文切换,比如x86架构下的TSS段,TSS段包括了一个任务执行的所需要的所有上下文,主要有:1.通用寄存器和段寄存器。2.标志寄存器EFLAGS,程序指针EIP,页表基地址寄存器CR3,任务寄存器和LDTR寄存器。3.I/O映射位图基地址和I/O位图信息。4.特权级0,1,2堆栈指针。5.链接到前一任务的链指针。所以上下文切换也很简单,直接用call或者jmp指令调度任务。同样ARM架构也有快速上下文切换技术。但是Linux为了适用更多的cpu架构没使用处理器相关的上下文切换技术,而是大部分通过软件实现。linux上下文切换就在schedule()函数里,很多地方都会调用这个函数。scchedule函数前面大部分代码是和调度算法相关的,比如实时任务调度算法,O(1)调度算法(2.6.22版本被CFS调度算法取代),CFS调度算法等。经过前面的代码计算后找出下一个要执行的任务,然后开始执行上下文切换。先看一段linux2.6.18版本还使用O(1)调度算法的schedule函数代码:
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
在日常使用Linux命令时候,经常使用重定向或者管道的方式处理命令的结果。以前对这两个命令的使用场景存在一些困惑,所以本文对这两个命令进行详细的总结。
linux都有相应开源工具实时采集网络连接、进程等信息其中网络连接一般包括最基本的五元组信息(源地址、目标地址、源端口、目标端口、协议号)再加上所属进程信息pid, exe, cmdline)等。其中这两项数据大多可直接读取linux /proc目录下的网络状态连接文件/proc/net/tcp、/proc/net/udp), 进程状态目录(/proc/pid/xx) 。
本文研究的主要是Linux进程函数fork(),vfork(),execX()的相关内容,具体介绍如下。
前段时间,我连续写了十来篇CPU底层系列技术故事文章,有不少读者私信我让我写一下CPU的寄存器。
在之前的文章中Linux从头学10:三级跳过程详解-从 bootloader 到 操作系统,再到应用程序,由于当时没有引入特权级的概念,用户程序和操作系统都工作在相同的特权级,因此可以直接通过[段选择子:偏移量] 的方式,来调用属于操作系统代码段中的函数,如下所示:
进程就是一个程序运行起来的状态,线程是一个进程中的不同的执行路径。 进程是OS分配资源的基本单位,线程是执行调度的基本单位。分配资源最重要的是:独立的内存空间,线程调度执行(线程共享进程的内存空间,没有自己独立的内存空间)
经过一系列的文章,我们通过汇编语言,体验了保护模式下分段、分页、特权级跳转、中断、异常等机制。 那么,事到如今,你是否已经深谙保护模式的设计之道了呢?究竟什么是保护模式,保护模式又在“保护”什么呢?他为了什么诞生,又和实模式有什么区别呢? 本文我们就来详细总结一下。
经过多篇文章的介绍,我们实现了从实地址模式跳转到保护模式,并在 IA-32 硬件系统中实现了代码的编写与执行。 进军保护模式 保护模式进阶 — 再回实模式
虽然我们在区分Linux进程类别, 但是我还是想说Linux下只有一种类型的进程,那就是task_struct,当然我也想说linux其实也没有线程的概念, 只是将那些与其他进程共享资源的进程称之为线程。
所以执行fork函数就会执行system_call函数,但是在这之前,还有些事情需要做,就是保存现场。下面是操作系统执行系统调用前,在内核栈里保存的寄存器,这个压入的寄存器和iret中断返回指令出栈的寄存器是对应的。其中ip指向的是调用系统调用返回后的下一句代码。
看完了进入内核前的工作后,我网络编程课的抄写作业自然是可以圆满完成啦,不过看了一部分后觉得确实很有意思,所以也是决定继续看下去,并且计划看完linux源码后跟着MIT6.s081写一个小的操作系统内核,希望我能够在6.29之前完成这个工作哈哈也就是我开始军训之前,补军训确实是个令人苦恼的事情。
下面从逻辑上完整走一遍中断处理过程(结合中断上下文的切换,以定时器中断为例,假设从用户态进入中断):
在系统有了命令行窗口后,我们可以直接在窗口内输入命令,启动应用程序。当通过命令行加载运行用户开发的程序时,命令行会被‘冷冻’,这是因为被启动的程序与命令行属于同一进程,CPU要把运行的权限交给应用程序,命令行窗口得不到运行的机会,因此看上去像死机一样。 这造成的一个问题是,命令行窗口一次只能加载一个应用程序,然后必须等到程序运行结束后,CPU控制权交还给命令行窗口时,它才有机会启动另一个应用程序。我们可以把命令行窗口的程序启动机制进行修改,使得应用程序运行后,控制台仍然能获取CPU的执行权限,但这么改动难度
进程定义:所谓进程是由正文段(Text)、用户数据段(User Segment)以及系统数据段(System Segment)共同组成的一个执行环境。它代表程序的执行过程,是一个动态的实体。
二进制:00000000 1100 1111 1 11 1 0011 00000000
exit是c语言的库函数,他最终调用_exit。在此之前,先清洗标准输出的缓存,调用用atexit注册的函数等, 在c语言的main函数中调用return就等价于调用exit。
2、嵌入式硬件系统的结构 (1)嵌入式处理器+外围硬件 (2)常见的外围硬件:电源、时钟、内存、I/O、通信、调试; 3、嵌入式处理器 (1)ARM、S3C6410、STM32单片机、华为海思、高通骁龙等 (2)Intel /AMD 都不是嵌入式处理器 4、嵌入式操作系统 功能: 种类:嵌入式linux;WinCE;Vxworks;μC/OS-II;Android;IOS。注意:linux不是嵌入式操作系统;MAC OS WINDOWS XP/7/8/10都不是
每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程A把数据从用户空间拷到内核缓冲区,进程B再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信。
---- 保护模式 什么实模式和保护模式 这是CPU的两种工作模式,解析指令的方式不同。 在实模式下,16位寄存器需要通过段:偏移的方法才能达到1MB的寻址能力。 物理地址 = 段值 x 16 + 偏移 此时段值还可以看成地址的一部分,段值为XXXXh表示以XXXX0h开始的一段内存。 在保护模式下,CPU有着巨大的寻址能力,并为操作系统提供了虚拟内存和内存保护。 虽然物理地址的仍然用上面的公式表示,但此时“段”的概念发生了变化,它变成了一个索引,指向一个数据结构的一个表项,表项中详细定义了段的
kvm 驱动,现在已经是linux kernel的一个模块了。其主要负责虚拟机的创建,虚拟内存的分配,VCPU寄存器的读写以及VCPU的运行。
上一篇文章中,我们详细介绍了操作系统特权级,以及利用调用门、TSS 实现不同特权级之间的跳转。 利用调用门实现特权级间跳转 — 原理篇
该文介绍了Linux系统编程中进程地址空间的基本概念和详细说明。包括分段机制、虚拟地址、分页机制、环境变量、命令行参数、栈、共享库和mmap内存映射区等。
进程通信: 每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程A把数据从用户空间拷到内核缓冲区,进程B再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信。
进程是Unix操作系统最基本的抽象之一。一个进程就是处于执行期的程序(目标码存放在某种存储介质上)。但进程并不仅仅局限于一段可执行程序代码(Unix称其为代码段(textsection))。通常进程还要包含其他资源,像用来存放全局变量的数据段(text section)、打开的文件、挂起的信号等,当然还包含地址空间及一个 或几个执行线程(threads of execution)。
程序是指储存在外部存储(如硬盘)的一个可执行文件, 而进程是指处于执行期间的程序, 进程包括 代码段(text section) 和 数据段(data section), 除了代码段和数据段外, 进程一般还包含打开的文件, 要处理的信号和CPU上下文等等.
领取专属 10元无门槛券
手把手带您无忧上云