我们就继续以此为基础,用保姆级的粒度一步一步操作,来讨论一下字符设备驱动程序的编写方法。
上一篇文章学习了字符设备的注册,操作过的小伙伴都知道上一篇文章中测试驱动时是通过手动创建设备节点的,现在开始学习怎么自动挂载设备节点和设备树信息的获取,这篇文章中的源码将会是我以后编写字符驱动的模板。
在前几篇文章中,我们一块讨论了:在 Linux 系统中,编写字符设备驱动程序的基本框架,主要是从代码流程和 API 函数这两方面触发。
该文章介绍了如何通过Linux内核技术实现一个基于ARM SoC的通用驱动程序,该驱动程序可以支持多种外设如LED、按键、喇叭等。首先介绍了Linux内核的树状结构和通用驱动程序涉及到的关键组件,如驱动程序加载、设备管理、中断处理、队列和调度等。然后详细讲解了如何创建一个通用的驱动程序框架,该框架可以支持多个外设,如LED、按键、喇叭等。最后,介绍了如何通过修改测试程序来点亮LED,并通过一个简单的示例来展示通用驱动程序的效果。
首先,我们知道驱动是内核的一部分,那么驱动在内核中到底扮演了什么角色呢? 设备驱动程序在内核中的角色:他们是一个个独立的“黑盒子”,使某个特定的硬件响应一个定义良好的内部编程接口,这些接口完全隐藏了设备的工作细节。(说白了,驱动程序除了对外提供特定的接口外,任何实现细节对应用程序都是不可见的。)用户的操作通过一组标准化的调用执行,而这些调用独立于特定的驱动程序。驱动程序的任务是把这些标准化调用映射到实际硬件的设备特有操作上。 在编写驱动程序时,程序员应该特别注意下面这个概念:编写访问硬件的内核代码时,不要给
V4L2英文全称是Video for Linux2,它是专门为视频设备设计的内核驱动。在做视频的开发中,一般我们操控V4L2的设备节点就可以直接对摄像头进行操作。通常V4L2在Linux的设备节点是**/dev/video0**。无论是MIPI摄像头还是UVC摄像头,它们底层默认操作的都是/dev/video0的节点。
上篇文章(【i.MX6ULL】驱动开发1——字符设备开发模板)介绍了字符设备的开发模板,但那是一种旧版本的驱动开发模式,设备驱动需要手动分配设备号再使用 register_chrdev进行注册,加载成功以后还需要手动使用mknod命令创建设备节点,比较麻烦。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码。比如在ARM Linux内,一个.dts(device tree source)文件对应一个ARM的machine,一般放置在内核的"arch/arm/boot/dts/"目录内,比如exynos4412参考板的板级设备树文件就是"arch/arm/boot/dts/exynos4412-origen.dts"。这个文件可以通过$make dtbs命令编译成二进制的.dtb文件供内核驱动使用。
上篇文章(【i.MX6ULL】驱动开发4--点亮LED(寄存器版))介绍了在驱动程序中,直接操作寄存器了点亮LED。本篇,介绍另外一种点亮LED的方式——设备树,该方式的本质也是操作寄存器,只是寄存器的相关信息放在了设备树中,配置寄存器时需要使用OF函数从设备树中读取处寄存器数据后再进行配置。
Linux内核下的 drivers/input/keyboard/gpio_keys.c实现了一个体系结构无关的GPIO按键驱动,使用此按键驱动,只需在设备树gpio-key节点添加需要的按键子节点即可。驱动的实现非常简单,但是较适合于实现独立式按键驱动。
在上一篇文章中Linux驱动实践:你知道【字符设备驱动程序】的两种写法吗?我们说过:字符设备的驱动程序,有两套不同的API函数,并且在文中详细演示了利用旧的API函数来编写驱动程序。
比如: 温度传感器、湿度传感器、光照度、门锁、LED灯、蜂鸣器 驱动都是使用字符设备框架编写
先来了解什么是输入设备? 常见的输入设备有键盘、鼠标、遥控杆、书写板、触摸屏等等,用户通过这些输入设备与 Linux 系统进行数据交换。
misc(杂项)设备,由于硬件设备的多样化,有一些设备不知道如何归类,所以linux将这些不知道怎么归类的设备归类为misc设备。例如led、watchdog、beep、adc等都可以归纳为misc设备。
在Linux 2.6中, ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx中,采用设备树后,许多硬件的细节可以直接通过它传递给Linux,而不再需要在内核中进行大量的冗余编码。
devfs(设备文件系统)是由Linux2.4内核引入的,它的出现主要使得设备驱动程序能够自主管理自己的设备文件。具体来说,devfs具有如下优点:
杂项设备(misc device)也是在嵌入式系统中用得比较多的一种设备驱动。
大家好,我是道哥,今天我为大伙儿解说的技术知识点是:【中断程序如何发送信号给应用层】。
本文介绍了如何通过驱动程序实现按键中断,并分析了中断方式的优缺点。作者首先介绍了按键中断的基本原理和实现方法,然后通过实例详细阐述了中断方式的驱动程序设计思路和步骤。最后,作者总结了驱动程序的设计和实现过程中需要注意的问题,并提供了相应的解决方案。
V4L2:Video for Linux two,缩写 Video4Linux2,是 Linux 内核中的一个框架,提供了一套用于视频设备驱动程序开发的 API。
如果将一个设备连接到Linux系统时,通常需要一个设备驱动程序才能正常工作。你可以通过设备文件或设备节点与设备驱动程序交互,这些是看起来像普通文件的特殊文件。由于这些设备文件就像普通文件一样,你可以使用ls、cat等程序与它们交互。这些设备文件一般存放在/dev目录下。继续并在你的系统上通过命令ls /dev查看/dev目录,你将看到系统上有大量的设备文件。
KMD框架通过V4L2标准方法在系统中创建设备节点,将控制接口直接暴露给UMD CSL进行访问,而其内部主要定义了一系列核心模块,包括CRM(Camera Request Manager):
在Linux3.x版本后,arch/arm/plat-xxx和arch/arm/mach-xxx中,描述板级细节的代码(比如platform_device、i2c_board_info等)被大量取消,取而代之的是设备树,其目录位于arch/arm/boot/dts
注意:需要准备一个 USB 设备,比如 U 盘、USB 蓝牙模块、usb 网卡或者 usb 摄像头等。
本文通过在荔枝派上实现一个 hello 驱动程序,其目的是深入的了解加载驱动程序的运作过程。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/154532.html原文链接:https://javaforall.cn
DM 是 U-Boot 中的驱动框架,全称 Driver Mode。像 Linux Kernel 中的驱动三要素 device 、bus 、driver 一样,DM 也有自己的三要素:udevice、uclass、driver。
设备树(Device Tree),将这个词分开就是“设备”和“树”,描述设备设备树的文件叫做DTS(Device Tree Source),这个DTS文件采用了树形结构来描述板机设备,也就是开发板信息,比如CPU数量、内存基地址、IIC接口上接了那些设备、SPI接口上接了那些设备等。如最开始的图片所示! 在图片中,树的主干就是系统总线,IIC控制器、SPI控制器等都是接到系统主线的分支上的。通过DTS这个文件描述设备信息是有相关的语法规则的,并且在Linux内核中只有3.x版本以后的才支持设备树。
还得当年我刚接触触摸屏手机的时候,我就得非常好奇,为什么我触摸屏幕会产生屏幕上UI的变化,感觉非常神奇。在进入这个行业之后,我才发现原来屏幕分触控层和显示层,我们触摸屏幕的事件会通过"驱动-系统-应用-应用的某个UI控件"这一个完整流程。
也就是说,在应用程序中,可以通过open,write,read等函数来操作底层的驱动。
实际项目过程中应用层需要操作内核中GPIO, 除了应用层直接通过export方式操作,具体操作方法[Linux驱动炼成记] 02-用户空间控制GPIO, 还可以通过sysfs设备节点方式操作
理想状况是:按下、松开按键,各产生一次中断,也只产生一次中断。 但是对于机械开关,它的金属弹片会反复震动。GPIO电平会反复变化,最后才稳定。一般是几十毫秒才会稳定。 如果不处理抖动的话,用户只操作一次按键,会发生多次中断,驱动程序可能会上报多个数据。
这篇文章介绍,如何使用杂项设备框架编写一个简单的按键驱动,完成编写、编译、安装、测试等流程,了解一个杂项字符设备驱动的开发流程。
在Linux设备驱动之字符设备(一)中学习了设备号的构成,设备号的申请与释放。在Linux设备驱动之字符设备(二)中学习了如何创建一个字符设备,初始化,已经注册到系统中和最后释放该字符设备。
一、 问题背景 最近研究了一下Android手机上用户操作的模拟方法, 有一些心得与大家分享下。 之所以去研究Android手机上用户操作的模拟方法,是因为最近做毕业设计,想尝试开发Android的UI自动化测试。最开始使用MonkeyRunner来录制脚本,开发过程中发现在MonkeyRunner上录制时,模拟拖拽的操作不方便。 接着我又尝试自己通过Monkey中的同样的方法进行用户操作的模拟,结果运行的时候出了Injecting to another application requires INJE
今天跟大家分享的是设备树,设备树是Linux3.x以后的版本才引入的,设备树用于描述一个硬件平台的板级细节。
uinput是一个内核模块(驱动),它允许应用程序模拟输入设备(input_dev)。 应用程序通过访问/dev/uinput或/dev/input/uinput:
Pinctrl子系统是驱动分离分层思想下的产物,硬件属性方面放在设备树dts中,其中关于设备所使用的的管脚配置,可以集中使用pinctrl。其中设备树pinctrl节点添加可参考文档
如下图,开源鸿蒙系统驱动框架HDF在内核中的实现,可以分为向用户层提供设备服务的管理模块(Manager),和实际管理硬件的Host模块。
记录一下这两天用正点原子开发板学petalinux的过程,众所周知,ZYNQ可以跑逻辑的FPGA,也可以跑裸机的SDK代码,还能跑个linux系统。在SDK开发中,只是在搭好的FPGA上跑一些简单的c代码,还没有安装上一个系统。
参考地址 http://blog.csdn.net/green1900/article/details/45646095 http://www.cnblogs.com/xiaojiang1025/p/6131381.html http://blog.csdn.net/21cnbao/article/details/8457546
linux-4.4内核的power相关的驱动位置:linux-4.4\drivers\power
本文介绍了如何利用驱动开发技术实现一个字符设备,并利用操作结构体来处理不同的功能。通过调用驱动程序API,可以在用户空间程序中实现对字符设备的打开、关闭、读写等操作。同时,文章还介绍了一种简化注册过程的方法,利用宏定义可以快速实现设备节点的创建和注册。
本文基于Linux kernel 5.15版本进行说明,旨在解析Linux设备树覆盖(Device Tree Overlay, DTO)的工作原理及其应用场景。
ioctl用于向设备发控制和配置命令,有些命令也需要读写一些数据,但这些数据是不能用read/write读写的,称为Out-of-band数据。也就是说,read/write读写的数据是in-band数据,是I/O操作的主体,而ioctl命令传送的是控制信息,其中的数据是辅助的数据。
Android 从 5.0 开始使用新的相机 API Camera2 来代替之前的旧版本,从而支持更多的特性。
领取专属 10元无门槛券
手把手带您无忧上云