我们在求解石头剪子布的纳什均衡问题时会用到 cvxopt 里面的这个函数:solvers.lp(c=c, G=G, h=h, A=A, b=b)。...其中 minimize 部分中约束条件的第一和第三条可以推导出:Gx <= h,而这种形式也是我们在日常应用中会遇到的最常见的形式,有了这种不等关系,我们就可以将遇到的约束问题,对号入座找到上图中所示的...c:就是我们要优化的目标方程的系数,此例中就是 [-4., -5.]
A,b:在这个例子中没有这两项,因为它们分别代表的是一个等式条件的系数和偏置,在上例中没有等式约束条件。...有了这几个系数后,就可以调用 solvers.lp 进行求解:
>>> from cvxopt import matrix, solvers
>>> c = matrix([-4., -5.])
>>>...= matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])
>>> sol = solvers.lp