首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Linux服务器检查性能瓶颈

概述 如果Linux服务器突然访问卡顿变慢,负载暴增,如何在最短时间内找出Linux性能问题所在? 通过执行以下命令,可以在1分钟内对系统资源使用情况有个大致的了解。...这些命令的输出,有助于快速定位性能瓶颈,检查出所有资源(CPU、内存、磁盘IO等)的利用率(utilization)、饱和度(saturation)和错误(error)度量,也就是所谓的USE方法。...通过这三个数据,可以了解服务器负载是在趋于紧张还是区域缓解。如果1分钟平均负载很 高,而15分钟平均负载很低,说明服务器正在命令高负载情况,需要进一步排查CPU资源都消耗在了哪里。...如果IO等待时间很长,那么系统的瓶颈可能在磁盘IO。 如果大量CPU时间消耗在用户态,也就是用户应用程序消耗了CPU时间。这不一定是性能问题,需要结合r队列,一起分析。...如果这个数值过大,可能是硬件设备遇到了瓶颈或者出现故障。 avgqu-sz:向设备发出的请求平均数量。如果这个数值大于1,可能是硬件设备已经饱和(部分前端硬件设备支持并行写入)。

4.3K20

Linux 内核事件看 MySQL 性能瓶颈

---- 背景 之前做 MySQL 参数优化的时候,为了寻找瓶颈,我通常是观察 MySQL 的 status ,看哪些计数器有问题,以便确认问题的大致范围和应该调整的参数。...既然 MySQL 是运行在操作系统之上的,那我们观测操作系统的内核事件,应该也能发现性能问题。 说干就干,下面是我最近新入手的云主机上的优化效果对比。...,找到并解决掉他们性能就会好起来。...---- 观察 Linux 的 IO 使用情况 对于 IO 的观察也有一个原则,那就是先看总量再看结构,最后精确到文件。 1....global.innodb_flush_log_at_trx_commit=0; (出于保证异常情况下数据不丢的目的,我们不应该把这两个参数设置为0,但是测试环境就不用管这么多了) 再次把插入程序拉起来看一下性能

1.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Linux 性能及调优指南》3.2 CPU瓶颈

    服务器来说主要的角色就是应用服务器或数据库服务器,CPU作为关键资源经常成为性能瓶颈的根源。CPU使用率高并不总是意味着CPU工作繁忙,它有可能是正在等待其他子系统。...在进行性能分析时,将所有子系统当做一个整体来看是非常重要的,因为在子系统中可能会出现瀑布效应。 注释:有种常见的错误观念认为CPU是服务器中最重要的。...3.2.1 发现CPU瓶颈 有多种方法可以来确认CPU瓶颈。在第二章“监控和基准工具”中介绍到,Linux有很多工具帮助我们确认瓶颈,问题是使用哪一个。 其中一个工具是uptime。...首先要确认系统性能问题是由CPU导致的而不是其他子系统。...如果处理器为服务器瓶颈,可以通过相应调整来改善性能,这包括: ▶ 使用ps -ef命令确保没有不必要的程序在后台运行。如果发现有不必要的程序,将其停止并使用cron将其安排在非高峰期运行。

    1.6K90

    扩展资源服务器解决oauth2 性能瓶颈

    用户携带token 请求资源服务器 资源服务器拦截器 携带token 去认证服务器 调用tokenstore 对token 合法性校验 资源服务器拿到token,默认只会含有用户名信息 通过用户名调用userdetailsservice.loadbyusername...查询用户全部信息 详细性能瓶颈分析,请参考上篇文章《扩展jwt解决oauth2 性能瓶颈》 本文是针对传统使用UUID token 的情况进行扩展,提高系统的吞吐率,解决性能瓶颈的问题 默认check-token...HttpHeaders(); headers.set("Authorization", getAuthorizationHeader(clientId, clientSecret)); // 调用认证服务器的...check-token 返回的全部信息 资源服务器在根据返回信息组装用户信息的时候,只是用了username 如果设置了 userDetailsService 的实现则去调用 loadUserByUsername...增加了一次查询逻辑,对性能产生不必要的影响 解决问题 扩展UserAuthenticationConverter 的解析过程,把认证服务器返回的信息全部组装到spring security的上下文对象中

    1.6K20

    扩展资源服务器解决oauth2 性能瓶颈

    [20190317234215_SWBWuI_%E6%9C%AA%E5%91%BD%E5%90%8D%E6%96%87%E4%BB%B6.jpeg] 用户携带token 请求资源服务器 资源服务器拦截器...携带token 去认证服务器 调用tokenstore 对token 合法性校验 资源服务器拿到token,默认只会含有用户名信息 通过用户名调用userdetailsservice.loadbyusername...查询用户全部信息 详细性能瓶颈分析,请参考上篇文章《扩展jwt解决oauth2 性能瓶颈》 本文是针对传统使用UUID token 的情况进行扩展,提高系统的吞吐率,解决性能瓶颈的问题 默认...HttpHeaders(); headers.set("Authorization", getAuthorizationHeader(clientId, clientSecret)); // 调用认证服务器的...增加了一次查询逻辑,对性能产生不必要的影响解决问题 扩展UserAuthenticationConverter 的解析过程,把认证服务器返回的信息全部组装到spring security的上下文对象中

    58240

    深挖data URI性能瓶颈

    即使在最有经验的前端开发者眼中,也会形成对 data URI 截然不同的看法:有人认为它是性能优化神器,有人认为它已经落后于时代。为什么会这样?本文带你进行深入的剖析。...性能神器还是弃之可惜的鸡肋? 在一次面试中,我问一个候选人图片优化有哪些方法,他说,可以用 base64(data URI)。...其实这只是“不要重复你自己原则”(DRY原则)的一个应用,谈不上性能优化。可能他觉得 base64 是一个较少见的技术,所以说出来肯定比较厉害。...其实不然,下面就来深挖一下 data URI 的性能优劣。 误区一:节省请求等于优化性能?...在CSS文件中过多使用Base64时,会让首次渲染时间(First Paint)增加2倍以上,在移动端,由于网络和手机性能的缘故,这一时间可能会增加10倍以上。

    1.8K20

    性能测试如何定位分析性能瓶颈

    在一些大厂都有专门的性能测试团队去定位分析系统性能瓶颈,并进行调优。 但是,这并不意味着对于那些不想进大厂或者限于学历暂时无法进入大厂的人学习性能测试就没有意义了。...那么接下来详细聊聊如何定位分析性能瓶颈,并调优呢?首先,说一下相对专业一些的性能测试在压测之前一般是怎么做的?...nmon可以监控linux服务器,cpu,磁盘,内存,网络等。 除了这些工具还可以使用一些命令来做一些简单监控,比如监控cpu可以用top命令,内存用free命令等。...为什么讲性能瓶颈分析之前要先讲监控呢? 原因很简单,监控就像是人的眼睛一样,或者说就像是做手工测试时定位分析bug需要先去看日志报什么错一样,那么一通百通,性能测试问题瓶颈定位分析也是如此。...一般响应时间过长有下面几个原因: 服务器硬件资源cpu,内存,磁盘达到瓶颈,可以使用监控命令排查 网络问题导致,比如丢包,带宽不够等等 线程出现死锁,阻塞等问题可以用jstack查看 中间件比如mq消息队列拥堵排队等

    1.9K41

    redis AOF性能瓶颈分析

    什么是AOF AOF是redis防止数据丢失的日志备份策略,总共有三种方式 Always 同步写回:每个写命令执行完同步地将日志写回磁盘;可靠性高,数据基本不会丢失,但同时每次命令都需要写到磁盘,性能影响比较大...相当于是性能和数据丢失之间做了一个折衷,这个也是默认策略。 No 操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。...由操作系统控制何时写会,性能非常好;如果发生宕机,也会造成大量数据丢失。 说到AOF,其实很多人都会拿它跟Rdb去做比较,Rdb是以二进制的方式存储到磁盘上。...另外一点,RDB和AOF对客户端的写入性能影响,一般情况下,AOF的写入性能是比不上RDB的,因为AOF多了一个写入操作,但是随着写入数据量越来越大,这个差距会越来越小。...比如从原来的 64 M,根据实际情况调大,降低 AOF 发生; 减少单redis实例大小,尽可能降低到10G以内,越小相应fork速度越快; 使用主从节点,AOF发生在从节点,从而对读写的主节点没有影响 linux

    96320

    五步定位性能瓶颈

    这种结构化的方法论确保了在面对复杂系统性能挑战时,能够有条不紊地推进优化工作。 二、日志分析:洞察系统异常与性能瓶颈 日志作为系统运行状况的直接反映,是诊断性能瓶颈和功能问题的宝贵资源。...关键日志信息解读 Too many open files 指系统达到了最大同时打开文件数的限制,提示需要检查并调整Linux系统的文件句柄限制,并审查代码中是否存在未妥善关闭文件句柄的情况。...应用服务器考量:尽管存储技术进步,成本考虑使得高速存储多用于数据库和文件服务器,应用服务器的磁盘使用需细致监控,防止成为性能短板。...四、软件性能分析重点:数据库监控与优化 在Web系统性能瓶颈排查中,数据库子系统往往是问题频发之地,据统计,超过70%的性能瓶颈与数据库相关。...五、 服务器监控与代码深度剖析:发现程序的隐秘角落 当硬件与数据库层面的排查未能明确性能瓶颈时,深入到应用服务器及其承载的软件逻辑中寻找答案变得至关重要。

    13110

    TensorFlow on Kubernetes性能瓶颈定位

    Author: xidianwangtao@gmail.com 当前性能问题描述 增加worker数,一定范围内能带来较好的性能提升,但是继续增加worker数时,训练性能提升不明显; 增加ps数...,一定范围内能带来较好的性能提升,但是继续增加ps数时,训练性能提升不明显; 可能原因: 与ps和worker的分布情况强相关: 目前的调度策略,主要根据服务器的cpu和内存使用情况进行均衡调度,...如果调度时,每台包含worker的服务器都有对应一个ps,那么训练性能会更高?如果有,性能提升多少呢? K8S中的worker从HDFS集群中读取训练数据时存在IO瓶颈?...测试用例 用例ID 服务器数 worker数 ps数 说明 1 2 10 1 一台服务器部署10个worker,另外一台部署1个ps 2 10 20 5 5台服务器分别部署10个worker,5台服务器分别部署...1个ps 3 20 50 10 10台服务器分别部署10个worker,10台服务器分别部署1个ps 4 40 200 20 20台服务器分别部署10个worker,20台服务器分别部署1个ps TensorFlow

    1.5K70

    Linux服务器性能调整(性能分析)

    1、性能分析的四个方面:CPU、内存、IO、网络 2、CPU -uptime -cat /proc/cpuinfo -vmstat :r 运行的进程 b被阻塞的进程 image.png 内存...image.png in 中断次数每秒 cs上下文切换 .如果wa过大,IO有瓶颈 image.png -top参数详解 image.png image.png -sar 3、内存...包括系统在某个应用中消耗的时间量:opcontrol oprof_start oprofpp op_time op_to_source op_merge -Performance Inspector:一套用于识别性能问题和性能特征的工具...www.cnblogs.com/lpfuture/p/6054896.html -数据库基准测试:mysql:https://www.cnblogs.com/huixuexidezhu/p/6945416.html -web服务器基准测试...:specweb:https://blog.csdn.net/kensp1/article/details/8498262 -web服务器基准测试:TPC-W:https://blog.csdn.net

    2.5K30

    性能测试中会遇到的瓶颈

    性能测试中如何定位性能瓶颈性能测试这种测试方式在发生过程中,其中一个过渡性的工作,就是对执行过程中的问题,进行定位,对功能的定位,对负载的定位,最重要的,当然就是问题中说的“瓶颈”,接触性能测试不深...,更非专家,自己的理解,瓶颈产生在以下几方面: 1、网络瓶颈,如带宽,流量等形成的网络环境 2、应用服务瓶颈,如中间件的基本配置,CACHE等 3、系统瓶颈,这个比较常用:应用服务器,数据库服务器以及客户机的...系统点击率下降通常表明服务器的响应速度在变慢,需进一步分析,发现系统瓶颈所在。...Throughput(吞吐率)可以依据服务器的吞吐量来评估虚拟用户产生的负载量,以及看出服务器在流量方面的处理能力以及是否存在瓶颈。...利用性能监控工具,比如:JAVA开发B/S结构的项目,可以通过JDK自带的Jconsole,或者JProfiler,来监控服务器性能,Jconsole可以远程监控服务器的CPU,内存,线程等状态,并绘制变化曲线图

    1.9K20

    性能测试之----瓶颈分析方法

    注:在UNIX/LINUX系统中,对于指标是(page)si和(page)so. (3)根据Physical Disk计数器的值分析性能瓶颈 对Physical Disk计数器的分析包括对Page Reads...waiting for service. 2、处理器分析法 (1)首先看System\%Total Processor Time 性能计数器的计数值 该计数器的值体现服务器整体处理器利用率,对多处理器的系统而言...如果该值持续超过90%,则说明整个系统面临着处理器方面的瓶颈,需要通过增加处理器来提高性能。 注:多处理器系统中,该数据本身不大,但PUT直接负载状况极不均衡,也应该视作系统产生处理器方面瓶颈。...如果该服务器是数据库服务器, Processor\%User Time 值大的原因很可能是数据库的排序或是函数操作消耗了过多的CPU时间,此时可以考虑对数据库系统进行优化。...注:在UNIX/LINUX系统中,对应的指标是Resident Size 5、网络分析法 Network Interface\Bytes Total/sec为发送和接收字节的速率,可以通过该计数器值来判断网络链接速度是否是瓶颈

    1.4K20

    遇到性能瓶颈的排查思路

    看看有没有异常报警,如果初期还没有监控的情况我会按照下面步骤去看看系统层面有没有异常 1、我首先会去看看系统的平均负载,使用top或者htop命令查看,平均负载体现的是系统的一个整体情况,他应该是cpu、内存、磁盘性能的一个综合...,一般是平均负载的值大于机器cpu的核数,这时候说明机器资源已经紧张了 2、平均负载高了以后,接下来就要看看具体是什么资源导致,我首先会在top中看cpu每个核的使用情况,如果占比很高,那瓶颈应该是cpu...发送套接字缓冲区大小的最大值(以字节为单位) net.core.wmem_max = 16777216 接收套接字缓冲区大小的最大值(以字节为单位) net.core.rmem_max = 16777216 提高Linux...net.ipv4.tcp_fin_timeout = 5 net.ipv4.tcp_keepalive_time = 300 net.ipv4.tcp_sack = 1 当服务器需要在大量TCP连接之间切换时

    2.3K22

    找到了性能瓶颈,然后呢?

    前言 本文直接从性能优化开始谈起,并非意味着寻找性能瓶颈无关紧要,性能优化一般都存在于发现性能瓶颈之后。找到性能瓶颈自然是优化的第一步,毕竟所谓有的放矢。...对于这种存在多次请求问题的分布式系统,请求泛洪所导致的性能恶化几乎是随流量呈指数关系增长的。那么可以想像,随着流量高峰的到来,其需要临时增加的服务器数量也是指数级的。...在服务端,数据应当由尽可能少的服务器来提供,且常在一起被消费的数据应尽可能放在同一服务器上,如上图所示。...自然地,可能很多人就会想到增加服务器的解决方案,既然用户激增且这样的状态并不长久,那么临时增加服务器分流并进行负载均衡不就行了?...参考资料 性能优化模式(https://tech.meituan.com/2015/12/10/performance-tuning-pattern.html)Linux 性能优化实战(https://

    22710

    处理 SoC 中的性能瓶颈

    SoC 中不断添加处理核心,但它们不会都得到充分利用,因为真正的瓶颈没有得到解决。 SoC 需要处理的数据量激增,虽然处理核心本身可以处理这些数据,但内存和通信带宽成为瓶颈。...他分析了当时排名前 500 的机器,并剖析了它们的核心性能、内存带宽、内存延迟、互连带宽和互连延迟。...在考虑系统性能时,要么受计算限制,要么受内存限制,要么受 I/O 限制。随着计算速度的加快,需要更加重视内存是否能够跟上计算速度,并且还需要更高的带宽接口来将传输数据。 但业界对处理性能非常着迷。...无论你的计算速度有多快,或者你的内存阵列有多大,最终决定芯片和系统性能的是连接两者的总线带宽。这就是最大的瓶颈所在,不仅仅是总线,还有高速接口,它们都为解决数据访问瓶颈做出了自己的努力。...处理器性能的提高如此之快,主要是通过核心数量的快速增加。然而,cache性能一直在下降,这是导致延迟增加的主要原因之一。即使 HBM 的引入也未能扭转这一趋势。

    14110

    性能测试之nginx瓶颈优化

    看起来是句柄数超出文件限制了 ulimit -a查看一下linux的句柄,发现已经加到65535,最大值 ? 查看nginx进程句柄数,发现也是65535,最大值 ?...linux句柄和nginx进程句柄都已经放到最大了,为什么还会报错呢? 问题分析 仔细想一想,其实这个Too many open files反映的并不是句柄数,而是打开文件数。什么是打开文件数?...linux下,有两个值可以代表打开的文件 1.file-max【最大打开文件数】 2.ulimit【最大文件句柄数】 通过lsof | grep 应用进程号 | wc -l可以实时查看当前进程一共打开了多少文件...然后再通过** /proc/sys/fs/file-max查看一下当前linux的file-max限制,最大是10240 ? 对比一下就知道了,打开的文件数远远超出了linux的限制数!

    2.4K30
    领券