首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Torch 中显存回收节省显存的方法

在进行模型推理时,需要考虑如何有效地利用和管理GPU显存。以下总结了常用的节省显存的方法。 将变量从显存释放 1....这样可以更有效地利用显存,因为一些显存是用来存储模型的参数和中间结果的,而这些显存的使用量通常不会随着批量大小的增加而增加。...将模型和数据移动到CPU内存:如果你的模型和数据都在GPU显存中,那么你可以考虑在完成推理后将它们移动到CPU内存,以释放显存。...这是因为PyTorch使用了一种称为"缓存分配器"的机制来管理显存,这种机制可以减少显存的分配和释放操作,从而提高效率。...当你删除一个Tensor并释放了它占用的显存后,这部分显存并不会立即返回给操作系统,而是被缓存分配器保留下来,以便在后续的操作中重复使用。

55110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    再次浅谈Pytorch中的显存利用问题(附完善显存跟踪代码)

    前言 之前在浅谈深度学习:如何计算模型以及中间变量的显存占用大小和如何在Pytorch中精细化利用显存中我们已经谈论过了平时使用中显存的占用来自于哪里,以及如何在Pytorch中更好地使用显存。...在这篇文章中,我们借用Pytorch-Memory-Utils这个工具来检测我们在训练过程中关于显存的变化情况,分析出我们如何正确释放多余的显存。...如何去释放不需要的显存。 首先,我们在下段代码中导入我们需要的库,随后开始我们的显存检测程序。...Tensor占用大,我们暂时将次归结为Pytorch在开始运行程序时需要额外的显存开销,这种额外的显存开销与我们实际使用的模型权重显存大小无关。...其实原因很简单,除了在程序运行时的一些额外显存开销,另外一个占用显存的东西就是我们在计算时候的临时缓冲值,这些零零总总也会占用一部分显存,并且这些缓冲值通过Python的垃圾收集是收集不到的。

    1.5K50

    win11怎么看显存——win11如何看显存

    显存查看方法1、 1、快捷键【Ctrl+Shift+ESC】打开【任务管理器】 2、点击左侧的性能 显存查看方法2、 在Windows 11在Windows 11中查看显存的方法如下: 1...在显卡属性窗口中,适配器下,就可以查看显存信息。 显存查看方法3、 此外,还可以使用DirectX诊断工具来查看显存。...在“显示”选项卡中,找到“显存”一项,即可查看显存信息。 以上两种方法都可以帮助您在Windows 11中查看显存信息。如果还有其他问题,欢迎随时提问。...显存对AI的重要意义 显存是显卡中存储图像数据的关键组成部分,对AI具有重要意义,主要体现在: 显存决定了计算机在处理图像时能够存储和操作的数据量大小。...在AI绘图中,需要频繁读写显存中的数据,因此高带宽的显存对于实时绘图和复杂计算非常重要。 因此,显存对于AI应用来说是非常重要的,尤其是在需要大量处理和操作图像数据的场合。

    7.3K10

    关于python中显存回收的问题

    而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用)。...解决思路 暂时还不清楚这个问题发生的机制,在一些特定场景下出现僵尸进程的问题似乎跟我复现的这个场景也有所不同。...只是考虑到在python的进程结束之后,这一块的显存还是被成功释放了的,因此我考虑直接用进程的方法来解决这个显存分配和清空的方法,以下是一个基于进程实现的案例: import os os.environ...总结概要 在使用一些python的GPU模块,或者写CUDA时,有时会发现显存被无端占用的场景,即时执行了cudaFree()或者python的del操作,也无法消除这一块的显存占用。...=linux清理gpu内存,GPU内存在CUDA脚本执行后无法

    2.7K10

    深度学习中GPU和显存分析

    显存占用越多,程序越快? 显存占用大小和batch size大小成正比?...nvidia-smi的输出 这是nvidia-smi命令的输出,其中最重要的两个指标: 显存占用 GPU利用率 显存占用和GPU利用率是两个不一样的东西,显卡是由GPU计算单元和显存等组成的,显存和GPU...1.2.1 参数的显存占用 只有有参数的层,才会有显存占用。这部份的显存占用和输入无关,模型加载完成之后就会占用。...,占用的显存大小基本与上述分析的显存差不多(会稍大一些,因为其它开销)。...(因为不需要执行优化) 深度学习中神经网络的显存占用,我们可以得到如下公式: 显存占用 = 模型显存占用 + batch_size × 每个样本的显存占用 可以看出显存不是和batch-size简单的成正比

    3.9K11

    深度学习中 GPU 和显存分析

    主要看显存的使用?...显存占用越多,程序越快? 显存占用大小和 batch size 大小成正比?...这么看来显存占用就是 W 和 Y 两个数组? 并非如此!!! 下面细细分析。 1.2.1 参数的显存占用 只有有参数的层,才会有显存占用。这部份的显存占用和输入无关,模型加载完成之后就会占用。...这时候还需要保存动量, 因此显存 x3 如果是 Adam 优化器,动量占用的显存更多,显存 x4 总结一下,模型中与输入无关的显存占用包括: 参数 W 梯度 dW(一般与参数一样) 优化器的动量(普通...(因为不需要执行优化) 深度学习中神经网络的显存占用,我们可以得到如下公式: 显存占用 = 模型显存占用 + batch_size × 每个样本的显存占用 可以看出显存不是和 batch-size 简单的成正比

    7.6K100

    一篇文章说清楚 Linux 应急响应技巧

    概述 Linux环境下处理应急响应事件往往会更加的棘手,因为相比于Windows,Linux没有像Autorun、procexp这样的应急响应利器,也没有统一的应急响应处理流程。...所以,这篇文章将会对Linux环境下的应急响应流程进行讲解,并且提供每一个环节中所用到的shell命令,以帮助大家快速、系统化地处理Linux环境下的病毒。...处理Linux应急响应主要分为这4个环节:识别现象-> 清除病毒-> 闭环兜底-> 系统加固。 首先从用户场景的主机异常现象出发,先识别出病毒的可疑现象。...闭环兜底 Linux下的病毒持久化驻留方式相比于 Windows 较少,主要以下4种方式。 检查是否存在可疑定时任务 枚举定时任务:crontab-l ?...、watchdogs、XorDDos,在很多Linux上都有。

    1.2K10

    Tensorflow与Keras自适应使用显存方式

    在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃。 可以使用自适应配置来调整显存的使用情况。...在建立tf.Session加入设置数据(显存使用比例为1/3),但有时你虽然设置了使用上限,在程序需要更高显存时还是会越过该限制 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction...=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 3、自适应分配 会自适应分配显存,不会将显存全部分配导致资源浪费...、如有设置fit_generator 将多线程关闭 #可将 use_multiprocessing=True #改为 use_multiprocessing=False 补充知识:Keras 自动分配显存...,不占用所有显存 自动分配显存,不占用所有显存 import keras.backend.tensorflow_backend as KTF import tensorflow as tf import

    1.4K20

    讲解pytorch 优化GPU显存占用,避免out of memory

    讲解PyTorch优化GPU显存占用,避免out of memory在深度学习任务中,对于复杂的神经网络和大规模的训练数据,显存占用成为一个常见的问题。...较大的Batch Size会占用更多的显存空间,但训练速度会更快。因此,在训练过程中我们可以根据显存的大小合理调整Batch Size。...清理中间变量在模型训练过程中,有时候我们会保存一些中间变量(如梯度、中间特征等),但这些变量会占用额外的显存空间。为了减少显存的占用,我们可以在使用完这些变量后,手动释放显存。...内存释放和显存清理:在循环中手动释放不再使用的变量和张量,并使用torch.cuda.empty_cache()来清理显存碎片,以释放显存空间。...使用更大显存的GPU:如果硬件条件允许,可以考虑使用更大显存容量的GPU来解决显存不足的问题。

    5.8K10
    领券