首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【零基础】学习 Web 安全 | 内附彩蛋

    事实是这样的:如果你不了解这些研究对象是不可能搞好安全研究的。 这样看来,Web有八层(如果把浏览器也算进去,就九层啦,九阳神功……)!!!每层都有几十种主流组件!!!这该怎么办? 别急,一法通则万法通,这是横向的层,纵向就是数据流啦!搞定好数据流:从横向的层,从上到下→从下到上,认真看看这些数据在每个层是怎么个处理的。 数据流中,有个关键的是HTTP协议,从上到下→从下到上的头尾两端(即请求响应),搞通!难吗?《HTTP权威指南》720页!!!坑爹,好难!!! 怎么办? 横向那么复杂、纵向数据流的HTTP协议就720页的书!!!放弃好了…… 不,千万别这样。 给你点信心是:《HTTP权威指南》这本书我压根没看过。但是通过百度/Google一些入门的HTTP协议,我做了大概了解,然后Chrome浏览器F12实际看看“Network”标签里的HTTP请求响应,不出几小时,就大概知道HTTP协议这玩意了。(这是快速研究的精髓啊) 搞明白HTTP协议后,你就会明白安全术语的“输入输出”。 黑客通过输入提交“特殊数据”,特殊数据在数据流的每个层处理,如果某个层没处理好,在输出的时候,就会出现相应层的安全问题。 精彩举例:

    05

    windows下获取TOA的方法

    目前互联网业界主流的服务器开发系统主要包括linux和windows两款操作系统,很多网络服务商需要获取客户端的真实IP和Port,特别是IP地址,对业务策略进行制定,优化;同时客户端的IP和Port信息作为基本的统计数据,对线上业务运营的监控和评估具有非常重要的意义。大部分情况下,服务器端可以通过网络API直接获取连接的网络信息,但是针对服务器前侧添加了代理的网络框架来说,就无法直接通过网络API来获取了。而TOA通过扩展TCP首部的可选字段,可以很好的将客户的真实的IP和Port信息传递到服务器端。因此需要一种手段可以在服务器侧来解析TOA字段,linux系统下的获取在业界有比较成熟的方法获取,但是windows系统下至今没有一种成熟的方案去获取。

    03

    00 Confluent_Kafka权威指南-前言部分

    对kafka来说,这是一个激动人心的时刻。kafka被成千上万个组织使用,包含了三分之一的世界500强公司。它是增长最快的开源项目之一,围绕它产生了一个巨大的生态系统。它是管理和处理流式数据的核心。那么kafka从何而来?我们为什么要建造它?它到底是什么? Kafka最初是我们在Linkedin开发的一个内部基础性系统。我们的初衷很简单:有很多数据库和系统能够存储数据,但是缺少对连续不断的流式数据的处理。在创建kafka之前,我们对各种现有的技术进行选择,从消息传递系统到日志聚合和ETL工具等,但是没有一个能很好的满足我们的需求。 我们最终决定从头开始。我们的想法是,与其像关系数据库、key-value数据库、搜索引擎、缓存数据库等专注保存大量的数据,我们将专注于数据的流式处理-建立一个数据系统-实际上是基于这个想法的数据架构。 这个想法被证明比我们预期的更加广泛适用。虽然kafka一开始只是在社交网络场景下支撑实时应用和数据流式处理,你现在可以看到它是每个行业的架构核心,大型的零售商正在重新围绕流式数据设计他们的基础业务、汽车制造企业正在收集和处理物联网汽车实时数据流、银行也正在重新考虑建立围绕kafka的基础业务处理和系统。 那么kafka究竟是怎么回事呢,它与你已经知道和使用的系统相比如何? 我们认为kafka是一个流式处理平台:允许对流式数据进行发布订阅、存储和处理,这正是apache kafka的设计初衷。这种数据的处理方式可能与你习惯的方式有点不同,但是对抽象应用程序的体系结构收到了难以置信的效果。kafka经常被拿来与现有的三个技术领域做比较:企业消息系统、大数据系统hadoop以及其数据集成和etl工具。这些比较虽然能说明一部分问题,但是存在着诸多的局限性。 Kafka像传统的消息队列一样,支持对消息的发布和订阅。在这方面类似于activeMQ、RabbitMQ、IBM的MQSeries以及其他的消息队列产品。但是即便有这些相似之处,kafka还是与传统的消息队列存在跟不上的区别,使得kafka完全是另外一种系统。kafka与传统的消息系统相比有三个最大的区别:首先,kafka是一个作为完全分布式系统的集群系统。即便在规模最大的公司也能将分布式扩展到所有的应用之上。而不是像传统的消息队列,需要运行几十个单独的消息broker,手动指定不同的应用。这使得你有了一个中心平台可以灵活应对公司内部的各种数据流。其次,kafka是一个真正的存储系统,可以持久化存储你想要的任何数据。这是一个巨大的优势,它实现了真正的传输保证,其数据复制了多个副本、支持持久化,并且可以随时保存。最后,流式处理的概念大大提高了数据处理的抽象水平,传统的消息队列中,消息队列只是分发消息。而kafka的流式处理能力让你用更少的代码就可以实现对数据的动态流式计算。这些差异让kafka自成体系,简单的只是认为kafka是另外一种消息队列是没有任何意义的。 另外一个关于kafka的观点,也是我们设计和开发kafka的初衷之一,我们可以把kafka看成一个实时版本的hadoop。hadoop允许周期性的存储和处理大规模的文件和数据,kafka让你可以对大规模持续的数据流进行存储和处理。在技术层面上,二者肯定存在相似之处。许多人将新兴的流式处理当作是hadoop批处理的超集。这种比较忽略了数据的连续性,低延迟的处理与自然的批处理的存储很大的不同。而hadoop的大数据分析能力,通常应用在数仓之上,不具有实时性,而kafka的低延迟特性,则让实时数据处理分析直接应用到业务的核心应用成为了可能。这使得当业务在进行的时候,可以有能力对业务的各种情况进行反应,当业务的各种情况出现时,就可以构建直接支持操作的服务,对业务进行反馈或者反馈客户体验等等。 与kafka进行比较的最后一个领域是ETL或者数据抽取工具。毕竟,这些工具移动数据,而kafka也可以移动数据。这是有一定到理的,但是我认为,核心区别在于kafka反转了这个问题,kafka是一个面向数据实时处理的平台,而不是从一个系统抽取数据插入另外一个系统的工具。这意味着kafka不仅可以连接现成的应用程序和系统,还可以支持自定义应用程序来触发这些相同的数据流。我们认为围绕事件流的架构设计是非常重要的。在某些方面,这些流动的数据流是现代数据是公司最核心的内容,与你在财报上看到的现金流同等重要。 结合这三个领域的能力,在所有的用例中将所有的数据流聚集到一起,这就是为什么流平台如此引人入胜的原因。

    03

    深度学习介绍与TensorFlow实战

    2017国庆快乐,非常开心,难得有充足的时间,可以撸代码。最近人工智能的风口很火爆,基于我掌握的情况,可以先了解,最好复习下高中数学知识(矩阵,多维数据,多元N次方程式)。不然很难看懂学习模型,学习公式。 从关系上讲: 人工智能(Artificial Intelligence)是一个最广泛的概念,人工智能的目的就是让计算机这台机器能够象人一样思考或者通过一些算法来达到,而机器学习(Machine Learning)是人工智能的分支,而深度学习(Deep Learning)是人工智能和机器学习的内在,即使用包含复杂结构或由多重非线性变换构成的多个处理层(神经网络)对数据进行高层抽象的算法。所以三者关系应该式从外到内:AI→ML→DL→神经网络

    02
    领券