HZ定义在<asm/param.h>,在i386平台上,目前采用的HZ值是1000。
所谓实时,就是一个特定任务的执行时间必须是确定的,可预测的,并且在任何情况下都能保证任务的时限(最大执行时间限制)。实时又分软实时和硬实时,所谓软实时,就是对任务执行时限的要求不那么严苛,即使在一些情况下不能满足时限要求,也不会对系统本身产生致命影响,例如,媒体播放系统就是软实时的,它需要系统能够在1秒钟播放24帧,但是即使在一些严重负载的情况下不能在1秒钟内处理24帧,也是可以接受的。所谓硬实时,就是对任务的执行时限的要求非常严格,无论在什么情况下,任务的执行实现必须得到绝对保证,否则将产生灾难性后果,例如,飞行器自动驾驶和导航系统就是硬实时的,它必须要求系统能在限定的时限内完成特定的任务,否则将导致重大事故,如碰撞或爆炸等。
Sleep函数: 功 能: 执行挂起一段时间 用 法: unsigned sleep(unsigned seconds); 注意: 在VC中使用带上头文件#include <windows.h>,在Linux下,gcc编译器中,使用的头文件因gcc版本的不同而不同#include <unistd.h> 在VC中,Sleep中的第一个英文字符为大写的"S" ,在linux下不要大写,在标准C中是sleep, 不要大写,简单的说VC用Sleep, 别的一律使用sleep 在VC中,Sleep()里
实时分为硬实时和软实时,硬实时要求绝对保证响应时间不超过期限,如果超过期限,会造成灾难性的后果,例如汽车在发生碰撞事故时必须快速展开安全气囊;软实时只需尽力使响应时间不超过期限,如果偶尔超过期限,不会造成灾难性的后果.
根据用户提供的文章内容进行摘要总结
接上文 从应用到内核查接口超时(中),查到是因为 journal 导致 write 系统调用被阻塞进而导致超时后,总感觉证据还不够充分,没有一个完美的交待。而且 leader 还想着让我把问题排查过程分享给同事们,这让我更加不安,担心搞错了方向。
动态连接的程序调用了libc的库函数,但是libc在运行才被加载到内存中,调用libc函数时,才解析出函数在内存中的地址,为了帮助程序更好的利用内存空间,不用每次把所有的函数真实地址都写进去,用到哪个查哪个,之后在使用就会很方便。
一、时间类型。Linux下常用的时间类型有4个:time_t,struct timeb, struct timeval,struct timespec,clock_t, struct tm. (1) time_t是一个长整型,一般用来表示用1970年以来的秒数. 该类型定义在<sys/time.h>中. 一般通过 time_t time = time(NULL); 获取. (2) struct timeb结构: 主要有两个成员, 一个是秒, 另一个是毫秒, 精确度为毫秒. 1 struct timeb 2
众所周知,硬实时的概念,其核心并非追求速度的极致,而是确保系统能在预定的、可重复的时间范围内给予确定的响应。这意味着,实时系统的正确性不仅在于计算逻辑的正确,更在于结果的产生时间是否符合预期。以汽车为例,当发生碰撞时,安全气囊必须在极短的时间内弹开,否则可能无法起到应有的保护作用。
在计算机系统中,CPU的功能是执行程序,总结起来就是我们在教科书上学到的:取指、译码、执行。那么问题来了,如果没有程序要执行,CPU要怎么办?也许您会说,停掉就是了啊。确实,是要停掉,但何时停、怎么停,却要仔细斟酌,因为实际的软硬件环境是非常复杂的。
经常会遇到部分工程师不知道如何选择PCIe授时,根据多年从业经验,给大家总结了选择PCIe授时卡应该注意的9个要点,希望对工程师朋友有帮助。
因而内核提供了两个调度器主调度器,周期性调度器,分别实现如上工作, 两者合在一起就组成了核心调度器(core scheduler), 也叫通用调度器(generic scheduler).
eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。
实时系统要求对事件的响应时间不能超过规定的期限,响应时间是指从某个事件发生到负责处理这个事件的进程处理完成的时间间隔,最大响应时间应该是确定的、可以预测的。
RS-485(亦称TIA-485, EIA-485)作为一种半双工总线,其收发过程不能同时进行。 RS-485通信的具体硬件原理可查阅其他资料,此处不详述。本文仅描述其控制方法及相关问题。
容器的隔离主要是依赖 Linux 操作系统的 Namespace 和 Cgroup,与依赖硬件辅助虚拟化的虚拟机隔离不同,前者存在不少隔离漏洞。随着云原生场景的大规模使用,大量应用的容器化暴露出了容器隔离性问题。
最近在读一本<<软件架构设计:大型网站技术架构与业务融合之道>>,它就像是把你平时一点点积累的知识有条理且有深度的整合。一步一步的将读者断断续续的知识接起来。以下文章是记录书本中的一些知识并加以拓展。
首先需要思考的问题是:什么是调度器(scheduler)?调度器的作用是什么?调度器是一个操作系统的核心部分。可以比作是CPU时间的管理员。调度器主要负责选择某些就绪的进程来执行。不同的调度器根据不同的方法挑选出最适合运行的进程。目前Linux支持的调度器就有RT scheduler、Deadline scheduler、CFS scheduler及Idle scheduler等。我想用一系列文章呈现Linux 调度器的设计原理。
在深入Linux系统的复杂世界中,性能优化始终是SRE关注的热点。最近在拜读国际著名的 LINUX 性能专家 Brendan Gregg 的个人博客和技术书籍。他的工作不仅涵盖了系统性能的监控和分析,还深入探讨了性能问题的根源及其解决方案。通过他的个人博客和技术书籍,我们可以窥见Linux性能优化的精髓,学习到如何利用各种工具和方法来提升系统效率,确保应用的顺畅运行。将会结合 Brendan Gregg博文与个人理解 出一个拜读系列博文。
李剑,携程系统研发部技术专家,负责Redis和Mongodb的容器化和服务化工作,喜欢深入分析系统疑难杂症。
收到个读者的问题,他在面试鹅厂的时候,被搞懵了,因为面试官问了他这么一个网络问题:
导读:OpenCloudOS 社区是由操作系统、软硬件厂商与个人共同倡议发起的操作系统社区项目,提供自主可控、绿色节能、安全可靠、高性能的下一代云原生操作系统,与生态伙伴一起打造中立的操作系统开源生态。 作为社区重要的技术方向,OpenCloudOS 社区的云原生操作系统自研了一系列的云原生特性,本文主要介绍 CgroupFS 和 SLI。 一、CgroupFS 特性 1、方案背景 容器的隔离主要是依赖 Linux 操作系统的 Namespace 和 Cgroup,与依赖硬件辅助虚拟化的虚拟机隔离不同,前者
分配 虚拟内存页 : 应用进程 调用 mmap 函数后 , 在 Linux 系统中 创建 " 内存映射 “ 时 , 会在 ” 用户虚拟地址空间 “ 中 , 分配一块 ” 虚拟内存区域 " ;
译自:BPF for storage: an exokernel-inspired approach
原文链接:https://www.cnblogs.com/charlieroro/p/14666082.html
Intel DPDK,全称为Intel Data Plane Development Kit,是一个为Intel架构处理器设计的强大的数据包处理工具集。不同于传统的Linux系统设计,DPDK专注于网络应用中的高性能数据包处理。
基于专家知识库形成运维工具,提升操作系统底层运维能力,具备高效自动化运维能力:通过监控、诊断、维护等达到全过程自动化运维。
这条命令的意思就是说: 运行test.py脚本,且将运行过程中本来要输出到屏幕/控制台的内容(如脚本里面的print语句、报错信息等)输出到test.log日志文件中去。
很久没有写技术文章了,做码农难,做养娃的码农更难,趁着娃看动画片的机会,受着王菲童鞋《我和我的祖国》歌唱精神的鼓舞,我要来说几句。
大内核锁(BKL)现在已经成为了一个遥远的记忆,但在那么多年里,它都是内核开发社区面临的一项棘手问题。然而 BKL 的终结并不意味着内核没有其他有问题的锁。近来,已经有一些关注转向了软中断锁(software-interrupt lock)或“下半部锁”(bottom half lock),因为它可能会在实时系统上导致延迟。Frederic Weisbecker 正在采取最新行动来减小这个锁的影响范围,该方法就是基于移除 BKL 时所采取的方法。
C\C++标准库中提供了两种计时函数clock()和time()。其用法如下: (1)clock()函数用法
很多人可能会留意到, 关注了公众号之后,隔一段时间, 公众号会推送消息出来,打开消息后发现这些消息看起来不像人工发送的,应该是设计好的一套关注后的定时推送机制, 从而来达到获客转化的目的.
需求背景: 后台业务逻辑类服务,其实现通常都会依赖其他外部服务,比如存储,或者其他的逻辑server。 有一类比较典型的问题: 假设主调方A是同步处理模型,有一个关键路径是访问B服务。 当被调服务B延迟很高时,主调方A的进程会挂起等待,导致后来的A请求也无法及时处理,从而影响整个A服务的处理能力。甚至出现A服务不可用。 当然,比较理想的是B出现过载或者故障时,A的服务能力能够降到和B同等的服务能力,而非不可用。 因此,部门会定期进行容灾演习,也期望能够验证到各个服务的"最差服务能力"。即验证被调出现较高延迟
最近 AWS Re:Invent 大会的一场演讲表明,Rust 和 Severless 简直是绝配——在成本方面,Rust 的优势可能比 Python 高出好几倍。
前言: 前文《[linux][redis]bgsave引起的latency突刺问题分析》分析了redis-server执行bgsave因为fork引起的latency突刺问题。 而在http://antirez.com/news/84中也提到了“However this is definitely not the full story”,剩下的story则是Linux的THP对redis的影响。 分析: 1,THP vs Normal page 配置了THP策略分别是always和never,redis-server和redis-benchmark配置相同的参数,执行bgsave的latency对比:
前几天接到一个性能测试任务,要求对语音识别服务进行性能测试。当拿到任务列表时,眼前的一幕...
上周有位读者面美团时,被问到:TCP 四次挥手中,能不能把第二次的 ACK 报文, 放到第三次 FIN 报文一起发送?
今天分享的是如何一步步深入地学习Makefile。在Linux中编译代码,不像是Windows中有很多集成的IDE,Linux中都是通过基本的编译工具如gcc来进行,比如要编译main.c这个文件,可以使用gcc main.c -o main.但是如果源文件很多,这种方法就不适用了,所以,必须要学会使用Makefile。
之前我们介绍了ret2text和ret2shellcode,这篇给大家介绍一下ret2libc。
在使用IDA静态反汇编时,如果正在逆向的文件中有动态链接库函数(比如调用了程序自定义so库中的函数),IDA只会显示一个地址,跟进去会发现是延迟绑定中关于plt的代码,无法知道具体调用了哪个函数,对于逆向起来很是麻烦,本文介绍如何识别这样的函数。 按道理讲,虽然不能动态调试,静态分析不能看到运行时绑定的地址,但是具体动态链接的过程一定也是根据文件中的信息,所以静态也一定可以知道调用的是哪个函数,但是我没有发现如何使用IDA自动确定(如有高手麻烦留言告诉我),于是通过查阅《程序员的自我修养》动态链接相关内容,
Ingo Molnar 的实时补丁是完全开源的,它采用的实时实现技术完全类似于Timesys Linux,而且中断线程化的代码是基于TimeSys Linux的中断线程化代码的。这些实时实现技术包括:中断线程化(包括IRQ和softirq)、用Mutex取代spinlock、优先级继承和死锁检测、等待队列优先级化等。
NVIDIA 发布了最新的 CUDA Toolkit 软件版本 11.8。此版本的重点是通过新的硬件功能增强编程模型和 CUDA 应用程序加速。 NVIDIA Hopper 和 Ada Lovelace 中特定于架构的新功能最初是通过库和框架增强功能公开的。NVIDIA Hopper 架构的完整编程模型增强功能将从 CUDA Toolkit 12 系列开始发布。 CUDA 11.8 有几个重要的特性。这篇文章提供了关键功能的概述。 支持NVIDIA Hopper 和 NVIDIA Ada 架构 CUDA 应
CFS为了实现公平,必须惩罚当前正在运行的进程,以使那些正在等待的进程下次被调度。
这篇文章之前发过,但是当时忘记标注原创了。有读者反馈,我文章被别人转载,但是没有注明原作者信息,所以就重新发一遍,标注个原创。
【引子】周末,读了一篇同事推荐的论文《STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters for Static Workload Performance》,很有启发,遂加入个人思考编译成文。
1. 问题背景 日前,某客户反映他们的实例有一段时间内慢查询突增,监控页面上也显示那段时间内监控数据也没有上报,经查看系统日志,以下内容引起了我们的注意: Mar 15 23:06:30 TENCENT64 kernel: BUG: soft lockup - CPU#2 stuck for 22s! [jbd2/md0-8:3661] ... Mar 15 23:06:30 TENCENT64 kernel: CPU: 2 PID: 3661 Comm: jbd2/md0-8 Not tainted 3
理想状况是:按下、松开按键,各产生一次中断,也只产生一次中断。 但是对于机械开关,它的金属弹片会反复震动。GPIO电平会反复变化,最后才稳定。一般是几十毫秒才会稳定。 如果不处理抖动的话,用户只操作一次按键,会发生多次中断,驱动程序可能会上报多个数据。
前言: 前文《[qemu][acpi]从虚拟化看ACPI》中,介绍了ACPI的大概逻辑,以及ACPI sleep的S1,S2,S3(STR),S4(STD),S5状态。 关于节电,intel提供了c-state和p-state的CPU级别的控制,linux也对其进行了支持。 分析: 1,c-state 关于c-state的详细解释,参考intel的文档https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states
领取专属 10元无门槛券
手把手带您无忧上云