首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最佳实践丨拥有这种思维才能突围增长

    今春,疫情席卷重来,依赖线下触点的商业形态面临重大挑战。我们能看到,那些通过小程序、企业微信等工具构建多元客户触点的企业;在产品服务层面创新、打造全新线上触点的企业;真正将线上触点与传统线下经营相融合的企业,疫情期间依旧可以有条不紊的展开客户运营与销售工作。 复旦大学管理学院市场营销系系主任金立印教授指出,这正是“触点思维”的体现。它以客户为中心,用数字技术改造生产、管理、销售、服务等流程,充分利用与客户的每一次体验式接触,进行持续、深度地运营,创造出可持续的商业增长。 腾讯企点正在携手《哈佛商业评论》中

    02

    PLC编程入门基础技术知识

    可编程序控制器,英文称Programmable Controller,简称PC。但由于PC容易和个人计算机(Personal Computer)混淆,故人们仍习惯地用PLC作为可编程序控制器的缩写。它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。

    03

    算法——union-find

    今天跟大家分享一个算法,如题union-find。这个算法要解决的就是一个动态连通性问题,什么是动态连通性呢?首先是连通性,给出两个对象,可以判断两个对象是否相连;再有就是动态,如若给出的两个对象不相连,我们可以将他们连起来,于是连通的对象发生了变化,体现了动态。举个栗子来说,就像判断两个计算机能否实现通信,就是判断他们是否能够通过现有的线路相连,进行通信,如果不能通信就需要通过其他手段,如增加物理线路,增加路由等来使得两个计算机实现连接。在下边的叙述中,为了方便起见,我们把一个一个对象,或者一个一个计算机称为触点,相连的几个触点整体称为连通分量(简称分量)。

    03

    头皮和硬膜下EEG对脑深部活动的定位

    对于皮层脑电图(ECoG)和头皮脑电图(sEEG)在定位大脑深层活动来源的能力上的不同尚不明显。与sEEG相比,ECoG的空间分辨率和信噪比更高,但其空间覆盖范围受到更多限制,有效测量组织活动的体积也是如此。本研究记录了4名顽固性癫痫患者在安静清醒状态下的多模式数据集,这些数据包括同步的头皮、硬膜下和深部EEG电极记录。本研究应用独立成分分析(ICA)来分离θ、α和β频段活动中的独立源。在所有患者中都观察到了硬膜下和头皮EEG成分,这与深部电极的一个或多个触点有显着的零滞后相关性。随后对相关成分的偶极建模显示,其偶极位置明显比非相关成分的偶极位置更接近深部电极。这些发现支持这样一种观点,即在两种记录方式中发现的成分都来自深部电极附近的神经活动。从本研究看,出于临床目的的将ECoG电极植入在靠近深部电极的位置,这并不能使源定位精度显著提高。此外,由于嵌入了ECoG电极的电隔离硅胶片,ECoG栅格衰减了sEEG。偶极子模型实验结果表明,sEEG的深源定位精度与ECoG相当。 1、背景 研究证明,与大脑深层结构的距离越大,记录的电极活动就越弱。在定位近端活动方面,ECoG较EEG有相当大的优势,具有优越的空间分辨率、频谱带宽和信噪比(SNR),因为记录不会被空间过滤或被头盖骨阻挡。然而,与EEG的整个头皮覆盖相比,ECoG网格或条带只覆盖皮质表面的有限区域,可能会影响更远端来源的局部化准确性。因此,到目前为止,还不清楚ECoG在定位深部和皮层下区域的源信号方面是否比EEG有优势。 要评估EEG和ECoG在深部源定位方面的实际比较,需要同时记录有/无创性的皮层和深层活动,如图1。

    03

    NeuroImage:左缘上回和角回对情景记忆编码的贡献:一项颅内脑电图研究

    根据双层注意模型,左腹外侧顶叶皮质(VPC)在情景记忆中的作用包括自下而上的注意定向到回忆的事物。研究表明它既有阳性相继记忆效应,也有阴性相继记忆效应。此外,很少有研究比较这一功能在异质性区域内各亚区的相对贡献,特别是前部VPC(缘上回/BA40)和后部VPC(角回/BA39)。为了阐明VPC在事件编码中的作用,本研究比较了24例留置电极癫痫患者在缘上回(SmG)和角回(AnG)多个频段颅内脑电的SME。研究发现VPC总体上存在显著的θ功率降低和高γ功率增加的SME,尤其是在SmG。此外,SmG在刺激后0.5~1.6s表现出明显的频谱倾斜SME,其中回忆词与未回忆词的功率谱斜率差异大于AnG中的差异(p=0.04)。这些结果肯定了VPC对情景记忆编码的贡献,并显示VPC在电生理基础上存在前后分离。

    00
    领券