前言:非常早之前就接触过同步这个概念了,可是一直都非常模糊。没有深入地学习了解过,最近有时间了,就花时间研习了一下《linux内核标准教程》和《深入linux设备驱动程序内核机制》这两本书的相关章节。趁刚看完,就把相关的内容总结一下。
在多年前,linux还没有支持对称多处理器SMP的时候,避免并发数据访问相对简单。
在现代操作系统里,同一时间可能有多个内核执行流在执行,因此内核其实像多进程多线程编程一样也需要一些同步机制来同步各执行单元对共享数据的访问,尤其是在多处理器系统上,更需要一些同步机制来同步不同处理器上的执行单元对共享的数据的访问。在主流的Linux内核中包含了如下这些同步机制包括:
Semaphore概述 信号量:它是不同进程或者一个给定进程内部不同线程间同步的机制 二值信号量:值为0或者1,与互斥锁类似,资源可用时,值为1,不可用时,值为0 计数信号灯:值在0到n之间。用来统计资源,其值代表可用资源数 等待操作:等待信号灯的值变为大于0,然后将其减1;而释放操作则相反,用来唤醒等待资源的进程或者线程 System V 信号灯(进程同步):是一个或者多个信号灯的一个集合。其中的每一个都是单独的计数信号灯。而Posix信号灯(线程同步)指的是单个计数信号灯 System V 信号灯由内核
除了原子操作,中断屏蔽,自旋锁以及自旋锁的衍生锁之外,在Linux内核中还存在着一些其他同步互斥的手段。
在处理进程间的同步与互斥问题时,我们离不开信号量和PV原语,使用这两个工具的目的在于打造一段不可分割不可中断的程序。应当注意的是,信号量和PV原语是解决进程间同步与互斥问题的一种机制,但并不是唯一的机制。
无名管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系一般指的是父子关系。无明管道一般用于两个不同进程之间的通信。当一个进程创建了一个管道,并调用fork创建自己的一个子进程后,父进程关闭读管道端,子进程关闭写管道端,这样提供了两个进程之间数据流动的一种方式。
初学操作系统的时候,我就一直懵逼,为啥进程同步与互斥机制里有信号量机制,进程通信里又有信号量机制,然后你再看网络上的各种面试题汇总或者博客,你会发现很多都是千篇一律的进程通信机制有哪些?进程同步与互斥机制鲜有人问津。看多了我都想把 CSDN 屏了.....,最后知道真相的我只想说为啥不能一篇博客把东西写清楚,没头没尾真的浪费时间。
UNIX/Linux 是多任务的操作系统,通过多个进程分别处理不同事务来实现,如果多个进程要进行协同工作或者争用同一个资源时,互相之间的通讯就很有必要了
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
由于各个进程之间独享一块用户地址空间,一般而言这块独立的用户地址空间不能互相访问,所以进程之间想要通信必须通过内核空间(每个进程共享)。
Linux 的同步机制不断发展完善。从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁。这些同步机制的发展伴随Linux从单处理器到对称多处理器的过渡;
如果需要多个进程合作来完成某个任务,那个可能会存在资源争用或者其他一些意想不到的问题,这个时候,就需要通过实现进程同步来防止问题的产生。
1.假设p1先执行,执行到p(s), s-=1, 此时s=-1<0,进程阻塞,主动放弃cpu使用权,cpu调度执行p2,执行p2的具体任务,然后进行v(s),,s+=1,s=0,p2执行完毕。cpu调度继续执行p1,此时s=0,p1被唤醒,因此就达到了先执行p2后执行p1的同步关系。 2.假设p2先执行,首先执行具体的代码,然后进行v(s),s+=1,s=1>0,然后p2执行完毕。cpu调度执行p1,p1首先p(s),s-=1,s=0,然后执行具体的代码。同样也达到了先执行p2后执行p1的同步关系。 二.Linux下信号量实现同步,线程2先执行输出"hello",线程1后执行输出"world\n"的功能
因为现代操作系统是多处理器计算的架构,必然更容易遇到多个进程,多个线程访问共享数据的情况,如下图所示:
在上一篇文章中,我们探讨了进程间通信的三种常见机制:管道、消息队列和共享内存。我们了解到,这些机制各有其特点和适用场景,可以根据实际需求选择合适的机制进行进程间通信。然而,进程间通信并不仅限于这三种方式。
Linux互斥与同步 零、前言 一、Linux线程互斥 1、基本概念及引入 2、互斥量mutex介绍 3、互斥量的使用 4、互斥量原理 二、可重入/线程安全 1、基本概念 2、线程安全 3、重入函数 4、联系与区别 三、常见锁概念 四、Linux线程同步 1、基本概念 2、条件变量的使用 3、条件变量等待 4、条件变量使用规范 五、POSIX信号量 1、信号量概念及介绍 2、信号量的使用 零、前言 本章主要讲解学习Linux中对多线程的执行中的同步与互斥 一、Linux线程互斥 1、基本概念及引入 互
由于Android系统是基于Linux系统的,所以有必要简单的介绍下Linux的跨进程通信,对大家后续了解Android的跨进程通信是有帮助的,本篇的主要内容如下:
我们使用过windows的都知道,当一个程序被卡死的时候不管怎样都没反应,这样我们就可以打开任务管理器直接强制性的结束这个进程,这个方法的实现就是和Linux上通过生成信号和捕获信号来实现相似的,运行过程中进程捕获到这些信号做出相应的操作使最终被终止。
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。
楼主本来是要继续写服务器并发的,但是后续的服务器相关点都和进程线程联系在一起,所以先把进程线程相关内容写完吧! 这次只写进程线程的概述,实际操作后续博文逐一代码实现。 进程同步or进程通信/线程同步or线程通信? 这两组概念迷惑我至今,网上和书籍对这个的描述也是爱用啥用啥的感觉,今天又重新理了一遍。 什么是同步:同步就是数据保持一致,无论是进程还是线程,都是实现了代码执行流程的分支,多个分支同时进行。多个分支互不干扰,但是又有些数据需要共享,让这些数据对所有分支保持一致即为同步。 什么是
操作系统中的进程是指正在运行的程序的实例。每个进程都有自己的地址空间、数据和代码。进程是操作系统进行资源分配和调度的基本单位。
本文主要介绍进程间通信(IPC,Inter Process Communication)的一些方式,包括:
关于同步理论的一些基本概念 临界区(critical area): 访问或操作共享数据的代码段 简单理解:synchronized大括号中部分(原子性) 竞争条件(race conditions)两个线程同时拥有临界区的执行权 数据不一致:(data unconsistency) 由竞争条件引起的数据破坏 同步(synchronization)避免race conditions 锁:完成同步的手段(门锁,门后是临界区,只允许一个线程存在) 上锁解锁必须具备原子性 原子性(象原子一样不可分割的操作) 有序
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。
实际上就是解释ucore的哲学家就餐怎么实现的,内核级别的信号量怎么实现的,之后给出自己关于用户级别的信号量的设计方案,比较两者异同。
在单线程的程序里,有两种基本的数据:全局变量和局部变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。
---- Hello、Hello大家好,我是木荣,今天我们继续来聊一聊Linux中多线程编程中的重要知识点,详细谈谈多线程中同步和互斥机制。 同步和互斥 互斥:多线程中互斥是指多个线程访问同一资源时同时只允许一个线程对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的; 同步:多线程同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源
进程间通信(interprocess communication,简称 IPC)指两个进程之间的通信。系统中的每一个进程都有各自的地址空间,并且相互独立、隔离,每个进程都处于自己的地址空间中,因此相互通信比较难,Linux 内核提供了多种进程间通信的机制。
Linux 内核中的同步机制:原子操作、信号量、读写信号量、自旋锁的API、大内核锁、读写锁、大读者锁、RCU和顺序锁。 1、介绍 在现代操作系统里,同一时间可能有多个内核执行流在执行,即使单CPU内核也需要一些同步机制来同步不同执行单元对共享的数据的访问。 主流的Linux内核中的同步机制包括: 原子操作 信号量(semaphore) 读写信号量(rw_semaphore) 自旋锁spinlock 大内核锁BKL(Big Kernel Lock) 读写锁rwlock、 brlock(只包含在2.4内核中
这两天看进程的同步与通信,看了几本书上的介绍,也从网上搜了很多资料,越看越迷惑,被这几个问题搞得很纠结。
网络IO会涉及到同步,异步,阻塞,非阻塞等几个概念。一个网络IO读取过程是数据从 网卡 到 内核缓冲区 到 用户内存 的过程。同步和异步区别在于数据从内核到用户内存的过程是否需要用户进行等待。
每个进程的用户地址空间都是独立的,一般而言是不能互相访问的,但内核空间是每个进程都共享的, 所以进程之间要通信必须通过内核。
进程间的通信方式,其实我们一直在用它,但是我们都不会去注意它。如果碰到面试官问你知道多少种进程间的通信方式,估计很多人都会有点懵。今天我们就来总结下进程间的通信方式有哪些。
文章主要介绍了在Linux系统中,如何利用自旋锁来实现线程之间的同步和互斥。主要包括了自旋锁的定义、工作原理、使用方式和注意事项,并通过实例介绍了如何在C语言中实现自旋锁。
1、信号量的定义: struct semaphore { spinlock_t lock; unsigned int count; struct list_head wait_list; }; 在linux中,信号量用上述结构体表示,我们可以通过该结构体定义一个信号量。 2、信号量的初始化: 可用void sema_init(struct semaphore *sem, int val);直接创建,其中val为信号量初值。也可以用两个宏来定义和初始化信号量的值为1或0: DECLAR
linux内核中有多种内核锁,内核锁的作用是: 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理; linux内核锁机制有信号量、互斥锁、自旋锁还有原子操作。 一、信号量(struct semaphore): 是用来解决进程/线程之间的同步和互斥问题的一种通信机制,是用来保证两个或多个关键代码不被并发调用。 信号量(Saphore)由一个值和一个指针组成,指针指向等待该信号量的进程。信号量的值表示相应资源的使用情况。信号量S>=0
首先Binder是Android中的一种独有的跨进程通信方式,简称IPC。它是专门为Android平台设计的。
每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
生产者消费者模型(CP模型)是一种非常经典的设计,常常出现在各种 「操作系统」 书籍中,深受教师们的喜爱;这种模型在实际开发中还被广泛使用,因为它在多线程场景中是十分高效的!
在主流的Linux内核中包含了几乎所有现代的操作系统具有的同步机制,这些同步机制包括:原子操作、信号量(sem aphore)、读写信号量(rw_sem aphore)、spinlock、BKL(Big Kernel Lock)、rwlock、brlock(只包含在2.4内核中)、RCU (只包含在2.6内核中)和seqlock(只包含在2.6内核中)
想必各位读者在看了昨天的文章分享之后,大概对线程有了一个比较清楚的认识了,但是昨天讲的东西过于纯理论化,所以在昨天的基础上,今天我们就来进行实战演练,做到活学活用,废话不多说,直接开干吧。
进程间通信(IPC,Inter-Process Communication),指至少两个进程或线程间传送数据或信号的一些技术或方法。
全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?
进程管理是操作系统中一个核心的功能,负责创建、调度、同步和终止进程。一个进程基本上是一个程序的执行实例,包含了程序的代码和其活动的数据以及执行历史的状态。有效的进程管理对于确保系统的稳定性、效率和公平性至关重要。
领取专属 10元无门槛券
手把手带您无忧上云