早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序。尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行必要的简化。
Linux内核具有模块化设计。 内核模块通常称为驱动程序是一段扩展内核功能的代码。 模块要么编译为可加载模块,要么内置在内核中。 可加载模块可以根据需要在正在运行的内核中进行加载和卸载,而无需重新启动系统。
我们看到这里面就展示了当前正在运行的进程,那大家看这其实就是我们当前打开的程序嘛
对Linux有一些了解的,都应该知道在Linux中所有的内容都是文件,包括硬盘等各种硬件在Linux中也都是按照文件来继续处理的,所以对Linux文件的了解将是非常重要的。
每次打开 Linux PC 时,它都会经历一系列阶段,然后最终显示提示输入用户名或密码的登录屏幕。每个 Linux 发行版在典型的启动过程中都会经历 4 个不同的阶段。 每次打开 Linux PC 时,它都会经历一系列阶段,然后最终显示提示输入用户名或密码的登录屏幕。每个 Linux 发行版在典型的启动过程中都会经历 4 个不同的阶段。 用户登录提示 在本指南中,我们将重点介绍 Linux 操作系统从开机到登录的各个步骤。请注意,本指南仅考虑了当前使用的GRUB2引导加载程序和systemdinit 绝
文件系统是os用来明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构;即在存储设备上组织文件的方法。操作系统中负责管理和存储文件信息的软件机构称为文件管理系统,简称文件系统。 文件系统由三部分组成:文件系统的接口,对对象操作和管理的软件集合,对象及属性。从系统角度来看,文件系统是对文件存储设备的空间进行组织和分配,负责文件存储并对存入的文件进行保护和检索的系统。具体地说,它负责为用户建立文件,存入、读出、修改、转储文件,控制文件的存取,当用户不再使用时撤销文件等。
可执行程序加载到内存中,形成进程时,操作系统要先创建描述进程的结构体对象。进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。课本上称之为PCB(process control block), Linux操作系统下的PCB是: task_struct
linux中有一个让很多初学者都不是特别清楚的概念,叫做“根文件系统”。我接触linux前前后后也好几年了,但是对这个问题,至今也不是特别的清楚,至少没法给出一个很全面很到位的解释。于是,今天我们就来理一理这个话题。
在默认登陆的情况下是【/root】路径,我们使用【cd ..】的命令来返回到根目录下。
本章介绍所有的关于模块和内核编程的关键概念,通过一个 hello world 模块来认识驱动加载的流程及相关细节。
linux系统的启动过程 在介绍破解Linux系统root密码之前先了解一下linux系统的启动过程: 1 开机自检(POST),初始化部分硬件 2 搜素可用于引导的启动设备(如磁盘的MBR) 3 读取并将控制权交给系统启动加载器(grub2) 4 启动加载器加载器配置,显示可用配置菜单 5 启动加载器加载内核及initramfs,置入内存 6 启动加载器将控制权交给内核 7 由内核查找initramfs中的硬件驱动,作为PID=1从initramfs执行/sbin/init (在RHEL
对于linux系统的初学者来说,理解并掌握linux系统启动流程能够使你够深入的理解linux系统,还可以通过系统的启动过程来分析问题解决问题。 Linux系统的启动流程 ---- 关于linux系统的启动流程可以分为以下步骤: POST(加电自检)–>加载BIOS(Basic Input/Outpu System)–>确定启动设备(Boot sequence)、加载Boot Loader–>加载内核(kernel)初始化initrd–>运行/sbin/init初始化系统–>打印用户登录
XDP 是一种特殊的 eBPF 程序,在数据包处理上因为在协议栈之前就可以处理数据,所以有非常高的性能。
是一种轻量级、可执行的独立软件包,它包含运行某个软件所需的所有内容,我们把应用程序和配置依赖打包好形成一个可交付的运行环境(包括代码、运行时需要的库、环境变量和配置文件等),这个打包好的运行环境就是image镜像文件。
课本概念:程序的一个执行实例,正在执行的程序等 内核观点:担当分配系统资源(CPU时间,内存)的实体
拿到一块YC2440(s3c2440)的开发板,经过几天的学习,我对arm-linux系统开发步骤有了一些认识。就以开发这个开发板为例,arm-linux开发工作大概分4个部分
当谈论到Linux系统管理时,了解常见的目录结构是非常重要的。Linux操作系统采用一种层次结构的目录布局,每个目录都有其特定的用途和功能。在本篇博客中,我们将介绍Linux目录的速查表,帮助您更好地理解和导航Linux文件系统。
###一、Bootloader的安装(在windows下进行) 1、什么是Bootloader: 要想弄明白什么是Bootloader,我们先从PC上的bootloader说起。PC上的BIOS和硬盘上的引导记录有着和嵌入式开发板中的bootloader类似的作用。PC的Bootloader由BIOS和MBR组成,BIOS固化在主板的一个芯片上,MBR则是硬盘的主引导扇区的缩写。PC启动后,首先执行BIOS的启动程序,根据用户的COMS设置,BOIS加载硬盘MBR的启动数据,并把系统的控制权交给保存在MBR
initramfs概述 initramfs与initrd类似,也是初始化好了且存在于ram中的,可以压缩也可以不压缩。但是目前initramfs只支持cpio包格式,它会被populate_rootfs->unpack_to_rootfs(&__initramfs_start, &__initramfs_end – &__initramfs_start, 0)函数(解压缩、)解析、安装。
SOC (System on a Chip) bring-up是一个复杂的过程,涉及到硬件、固件和软件的集成和验证,以下是一个基于BROM,SPL,UBOOT和Linux的启动流程的概述:
例如一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。给部署带来了极大的困难。
在上一篇文章鸿蒙系统研究之三:迈出平台移植第一步,我们将内核加载并启动,但缺少根文件系统。这篇文章我们来探讨一下根文件系统的制作。
eBPF(extended Berkeley Packet Filter) 可谓 Linux 社区的新宠,很多大公司都开始投身于 eBPF 技术,如 Goole、Facebook、Twitter 等。
insmod命令用于将给定的模块加载到内核中。Linux有许多功能是通过模块的方式,在需要时才载入kernel。如此可使kernel较为精简,进而提高效率,以及保有较大的弹性。这类可载入的模块通常是设备驱动程序。
可以采用 Dockerfile 来构建镜像。Dockerfile 描述了构建的每个步骤,每个构建步骤会带来文件系统内容的变化,也就是 changeset。就像洋葱一样,一层一层的。这样也会带来一个问题,对镜像的改动越多,会导致镜像文件体积越大。
任何系统启动的第一步都是加电,也就是按下电源,然后计算机硬件会主动读取BIOS来加载硬件设备信息以及硬件设备的自我检测,之后系统会主动地读取第一个有引导程序的设备,该引导程序可以指定使用哪个内核来启动,并将其加载至内存当中运行,同时内核还要加载其他硬件设备以及对应的驱动程序,来使主机各个组件开始运行,等所有硬件设备加载完成之后,系统就真正启动来了,然后系统会操作一些外部程序开始准备软件的运行环境。之后加载一些系统运行所需要的软件程序。最后一步就是等待用户的登陆。
镜像是一种轻量级、可执行的独立软件包,它包含运行某个软件所需的所有内容,我们把应用程序和配置依赖打包好形成一个可交付的运行环境(包括代码、运行时需要的库、环境变量和配置文件等),这个打包好的运行环境就是image镜像文件。
UnionFS(联合文件系统): Union文件系统(UnionFS)是一种分层、轻量级并且高性能的文件系统,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem)。Union 文件系统是 Docker 镜像的基础。镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码、运行时、库、环境变量和配置文件。
本文由马哥教育面授班24期学员推荐,转载自互联网,作者为郭東,内容略经小编改编和加工,观点跟作者无关,最后感谢作者的辛苦贡献与付出。 Linux和Windows操作系统中的文件系统些不同,在学习使用linux之前,能够了解这个不同之处助于后续的学习。本文先对Windows和Linux上面文件系统的一些概念进行区分,然后介绍一些Linux文件系统相关的原理,最后较为详细地介绍了Linux系统的目录结构。 一、Linux和Windows文件系统 ---- 下面分别简单介绍一下启动Windows和Linux
操作系统的内核功能强大,它具有监督和控制整个系统的特权,通过软件方式,操作系统是实现观察性、安全性与网络功能的理想场所,但在操作系统的内核中进行任何修改,都会带来安全风险或性能损失,并会破坏原有软件对操作系统版本和模块的依赖关系。 能否实现操作系统可编程性,允许额外代码在不更改操作系统内核源代码的情况下运行,或在新模块中创建不需要的依赖项? eBPF实现了这一点,它在操作系统中运行沙箱程序,可以方便地在不重建内核或加载内核模块的同时,实现网络、安全、应用程序分析/跟踪和性能故障排除等功能。由此,诞生了一波基
所谓thread local变量,就是对于同一个变量,每个线程都有自己的一份,对该变量的访问是线程隔离的,它们之间不会相互影响,所以也就不会有各种多线程问题。
运行的虚拟机一旦出了故障,则在其之上的很多操作便都作废,要重头来过。但是聪明的人总是有的,所以虚拟机可以打快照。 那么在使用容器的时候,万一容器给出了故障,那不也意味着前功弃了一大半(留下多少,下一篇会讲解存储卷。)这就好比我基于 docker 构建了一个三主三从的 redis 集群,docker 一关机,我的集群就要重新搭建了。
BPF通过一种软件定义的方式,将内核的行为和数据暴露给用户空间,开发者可以通过在用户空间编写BPF程序,加载到内核空间执行,进而实现对内核行为的灵活管理和控制
在引入 Docker之前,或许有必要先聊聊 LXC。在 Linux使用过程中,大家很少会接触到LXC,因为 LXC对于大多数人来说仍然是一个比较陌生的词汇。那为什么我们要在开篇之时,先聊这个陌生的概念呢?这是因为LXC是整个 Docker运行的基础。
Android 从 5.0 开始使用新的相机 API Camera2 来代替之前的旧版本,从而支持更多的特性。
《Linux入侵检测》系列文章目录: 1️⃣企业安全建设之HIDS-设计篇 2️⃣入侵检测技术建设及其在场景下的运用 3️⃣ATT&CK矩阵linux系统实践/命令监控 4️⃣Linux入侵检测之文件监控 5️⃣Linux入侵检测之syscall监控 6️⃣linux入侵检测之应急响应 0x01:Syscall简介 内核提供用户空间程序与内核空间进行交互的一套标准接口,这些接口让用户态程序能受限访问硬件设备,比如申请系统资源,操作设备读写,创建新进程等。用户空间发生请求,内核空间负责执行,这些接口便是用户空
镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,他包含运行某个软件所需的所有内容,包括代码、运行时库、环境变量和配置文件。将所有的应用和环境直接打包为docker镜像,就可以直接运行。
首先我们来看看镜像到底是什么?虽然前面有介绍过镜像和容器 ,但也不是特别的深入。
当我们在工作中,一款产品从开发设计到上线运行,其中需要开发人员和运维工程师,开发人员负责代码编写,开发产品,运维工程师需要测试环境,产品部署。这之间就会有分歧。
dmesg 命令用于检查和控制内核的环形缓冲区。Kernel 会将开机信息存储在 ring buffer 中,我们可以从中获得诸如系统架构、CPU、挂载的硬件,RAM 等多个运行级别的大量的系统信息。可利用 dmesg 来查看系统的启动信息。开机信息也会保存在 /var/log/dmesg。
其实每个Linux的系统都是由内核 + 系统应用组成。 每个系统的内核其实都是一样的,只是系统应用不同,系统自带的函数库却不相同, 所以不同的操作系统之间不能够兼容。 Docker将用户程序和所需要调用的系统函数库一起打包。
镜像是一种轻量级、可执行的独立软件包, 用来打包软件运行环境和基于运行环境开发的软件 ,它包含运行某个软件所需的所有内容,包括代码、运行时、库、环境变量和配置文件。
当碰到内核线程的资源使用异常时,很多常用的进程级性能工具,并不能直接用到内核线程上。这时,我们就可以使用内核自带的 perf 来观察它们的行为,找出热点函数,进一步定位性能瓶颈。不过,perf 产生的汇总报告并不直观,所以我通常也推荐用火焰图来协助排查。
内存是能够直接被cpu操作的存储器.而硬盘光驱是外存,外存中的数据只有先调入内存后才能被中央处理器访问、处理。
GRUB 加载了内核之后,内核首先会再进行二次系统的自检,而不一定使用 BIOS 检测的硬件信息。这时内核终于开始替代 BIOS 接管 Linux 的启动过程了。
但是有时候,驱动不够新,比如14.04用的是340.98版本,如果手动安装驱动可以参考官网指南。
启动速度是嵌入式产品一个重要的性能指标,更快的启动速度会让客户有更好的使用体验,在某
领取专属 10元无门槛券
手把手带您无忧上云